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ABSTRACTBoth doument lustering and word lustering are well stud-ied problems. Most existing algorithms luster doumentsand words separately but not simultaneously. In this paperwe present the novel idea of modeling the doument olle-tion as a bipartite graph between douments and words, us-ing whih the simultaneous lustering problem an be posedas a bipartite graph partitioning problem. To solve the par-titioning problem, we use a new spetral o-lustering algo-rithm that uses the seond left and right singular vetors ofan appropriately saled word-doument matrix to yield goodbipartitionings. The spetral algorithm enjoys some opti-mality properties; it an be shown that the singular vetorssolve a real relaxation to the NP-omplete graph bipartition-ing problem. We present experimental results to verify thatthe resulting o-lustering algorithm works well in pratie.
1. INTRODUCTIONClustering is the grouping together of similar objets. Givena olletion of unlabeled douments, doument lusteringan help in organizing the olletion thereby failitating fu-ture navigation and searh. A starting point for applyinglustering algorithms to doument olletions is to reatea vetor spae model [20℄. The basi idea is (a) to extratunique ontent-bearing words from the set of doumentstreating these words as features and (b) to then representeah doument as a vetor in this feature spae. Thus theentire doument olletion may be represented by a word-by-doument matrix A whose rows orrespond to words andolumns to douments. A non-zero entry in A, say Aij , in-diates the presene of word i in doument j, while a zeroentry indiates an absene. Typially, a large number ofwords exist in even a moderately sized set of douments, forexample, in one test ase we use 4303 words in 3893 dou-ments. However, eah doument generally ontains only asmall number of words and hene, A is typially very sparsewith almost 99% of the matrix entries being zero.Existing doument lustering methods inlude agglomer-
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ative lustering[25℄, the partitional k-means algorithm[7℄,projetion based methods inluding LSA[21℄, self-organizingmaps[18℄ and multidimensional saling[16℄. For omputa-tional eÆieny required in on-line lustering, hybrid ap-proahes have been onsidered suh as in[5℄. Graph-theoretitehniques have also been onsidered for lustering; manyearlier hierarhial agglomerative lustering algorithms[9℄ andsome reent work[3, 23℄ model the similarity between dou-ments by a graph whose verties orrespond to doumentsand weighted edges or hyperedges give the similarity be-tween verties. However these methods are omputationallyprohibitive for large olletions sine the amount of workrequired just to form the graph is quadrati in the numberof douments.Words may be lustered on the basis of the douments inwhih they o-our; suh lustering has been used in theautomati onstrution of a statistial thesaurus and in theenhanement of queries[4℄. The underlying assumption isthat words that typially appear together should be assoi-ated with similar onepts. Word lustering has also beenpro�tably used in the automati lassi�ation of douments,see[1℄. More on word lustering may be found in [24℄.In this paper, we onsider the problem of simultaneous oro-lustering of douments and words. Most of the existingwork is on one-way lustering, i.e., either doument or wordlustering. A ommon theme among existing algorithms isto luster douments based upon their word distributionswhile word lustering is determined by o-ourrene in do-uments. This points to a duality between doument andterm lustering. We pose this dual lustering problem interms of �nding minimum ut vertex partitions in a bipar-tite graph between douments and words. Finding a globallyoptimal solution to suh a graph partitioning problem is NP-omplete; however, we show that the seond left and rightsingular vetors of a suitably normalized word-doumentmatrix give an optimal solution to the real relaxation ofthis disrete optimization problem. Based upon this obser-vation, we present a spetral algorithm that simultaneouslypartitions douments and words, and demonstrate that thealgorithm gives good global solutions in pratie.A word about notation: small-bold letters suh as x, u,p will denote olumn vetors, apital-bold letters suh asA, M , B will denote matries, and sript letters suh asV;D;W will usually denote vertex sets.
2. BIPARTITE GRAPH MODELFirst we introdue some relevant terminology about graphs.A graph G = (V; E) is a set of verties V = f1; 2; : : : ; jVjg
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and a set of edges fi; jg eah with edge weight Eij . Theadjaeny matrixM of a graph is de�ned byMij = � Eij ; if there is an edge fi; jg;0; otherwise:Given a partitioning of the vertex set V into two subsetsV1 and V2, the ut between them will play an importantrole in this paper. Formally,ut(V1;V2) = Xi2V1;j2V2Mij : (1)The de�nition of ut is easily extended to k vertex subsets,ut(V1;V2; : : : ;Vk) = Xi<j ut(Vi;Vj): (2)We now introdue our bipartite graph model for represent-ing a doument olletion. An undireted bipartite graphis a triple G = (D;W ; E) where D = fd1; : : : ; dng, W =fw1; : : : ; wmg are two sets of verties and E is the set ofedges ffdi; wjg : di 2 D; wj 2 Wg. In our ase D is the setof douments and W is the set of words they ontain. Anedge fdi; wjg exists if word wj ours in doument di; notethat the edges are undireted. In this model, there are noedges between words or between douments.An edge signi�es an assoiation between a doument anda word. By putting positive weights on the edges, we anapture the strength of this assoiation. One possibility isto have edge-weights equal term frequenies. In fat, mostof the term-weighting formulae used in information retrievalmay be used as edge-weights, see [20℄ for more details.Consider them�n word-by-doument matrixA suh thatAij equals the edge-weight Eij . It is easy to verify that theadjaeny matrix of the bipartite graph may be written asM = � 0 AAT 0 � ;where we have ordered the verties suh that the �rstm ver-ties index the words while the last n index the douments.We now show that the ut between di�erent vertex sub-sets, as de�ned in (1) and (2), emerges naturally from ourformulation of word and doument lustering.
2.1 Simultaneous ClusteringA basi premise behind our algorithm is the observation:Duality of word & doument lustering: Word luster-ing indues doument lustering while doument lusteringindues word lustering.Given disjoint doument lusters D1; : : : ;Dk, the orre-sponding word lusters W1; : : : ;Wk may be determined asfollows. A given word wi belongs to the word luster Wmif its assoiation with the doument luster Dm is greaterthan its assoiation with any other doument luster. Usingour graph model, a natural measure of the assoiation of aword with a doument luster is the sum of the edge-weightsto all douments in the luster. Thus,Wm = 8<:wi : Xj2DmAij � Xj2DlAij ; 8 l = 1; : : : ; k9=; :Thus eah of the word lusters is determined by the dou-ment lustering. Similarly given word lusters W1; : : : ;Wk,

the indued doument lustering is given byDm = 8<:dj : Xi2WmAij � Xi2W lAij ; 8 l = 1; : : : ; k9=; :Note that this haraterization is reursive in nature sinedoument lusters determine word lusters, whih in turndetermine (better) doument lusters. Clearly the \best"word and doument lustering would orrespond to a par-titioning of the graph suh that the rossing edges betweenpartitions have minimum weight. This is ahieved whenut(W1 [ D1; : : : ;Wk [ Dk) = minV1;::: ;Vk ut(V1; : : : ;Vk)where V1; : : : ;Vk is any k-partitioning of the bipartite graph.
3. GRAPH PARTITIONINGGiven a graph G = (V; E), the lassial graph bipartition-ing problem is to �nd nearly equally-sized vertex subsetsV�1;V�2 of V suh that ut(V�1;V�2) = minV1;V2 ut(V1;V2).Graph partitioning is an important problem and arises invarious appliations, suh as iruit partitioning, telephonenetwork design, load balaning in parallel omputation, et.However it is well known that this problem is NP-omplete[12℄.But many e�etive heuristi methods exist, suh as, theKernighan-Lin(KL)[17℄ and the Fiduia-Mattheyses(FM)[10℄algorithms. However, both the KL and FM algorithms searhin the loal viinity of given initial partitionings and have atendeny to get stuk in loal minima.
3.1 Spectral Graph BipartitioningSpetral graph partitioning is another e�etive heuristithat was introdued in the early 1970s[15, 8, 11℄, and pop-ularized in 1990[19℄. Spetral partitioning generally givesbetter global solutions than the KL or FM methods.We now introdue the spetral partitioning heuristi. Sup-pose the graph G = (V ; E) has n verties and m edges. Then�m inidene matrix of G, denoted by IG has one row pervertex and one olumn per edge. The olumn orrespondingto edge fi; jg of IG is zero exept for the i-th and j-th en-tries, whih arepEij and �pEij respetively, where Eij isthe orresponding edge weight. Note that there is some am-biguity in this de�nition, sine the positions of the positiveand negative entries seem arbitrary. However this ambiguitywill not be important to us.Definition 1. The Laplaian matrix L = LG of G is ann� n symmetri matrix, with one row and olumn for eahvertex, suh thatLij = 8<: Pk Eik; i = j�Eij ; i 6= j and there is an edge fi; jg0 otherwise: (3)Theorem 1. The Laplaian matrix L = LG of the graphG has the following properties.1. L =D�M , where M is the adjaeny matrix and Dis the diagonal \degree" matrix with Dii =Pk Eik.2. L = IGIGT .3. L is a symmetri positive semi-de�nite matrix. Thusall eigenvalues of L are real and non-negative, and Lhas a full set of n real and orthogonal eigenvetors.4. Let e = [1; : : : ; 1℄T . Then Le = 0. Thus 0 is aneigenvalue of L and e is the orresponding eigenvetor.
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5. If the graph G has  onneted omponents then L has eigenvalues that equal 0.6. For any vetor x, xTLx =Pfi;jg2E Eij(xi � xj)2.7. For any vetor x, and salars � and �(�x+ �e)TL(�x+ �e) = �2xTLx: (4)Proof.1. Part 1 follows from the de�nition of L.2. This is easily seen by multiplying IG and IGT .3. By part 2, xTLx = xT IGITGx = yTy � 0, for allx. This implies that L is symmetri positive semi-de�nite. All suh matries have non-negative real eigen-values and a full set of n orthogonal eigenvetors[13℄.4. Given any vetor x, Lx = IG(IGTx). Let k be therow of IGTx that orresponds to the edge fi; jg, thenit is easy to see that(IGTx)k = pEij(xi � xj); (5)and so when x = e, Le = 0.5. See [11℄.6. This follows from equation (5).7. This follows from part 4 above. tuFor the rest of the paper, we will assume that the graph Gonsists of exatly one onneted omponent. We now seehow the eigenvalues and eigenvetors of L give us informa-tion about partitioning the graph. Given a bipartitioningof V into V1 and V2 (V1 [ V2 = V), let us de�ne the parti-tion vetor p that aptures this division,pi = � +1; i 2 V1;�1; i 2 V2: (6)Theorem 2. Given the Laplaian matrix L of G and apartition vetor p, the Rayleigh QuotientpTLppTp = 1n � 4 ut(V1;V2):Proof. Clearly pTp = n. By part 6 of Theorem 1, pTLp =Pfi;jg2E Eij(pi � pj)2. Thus edges within V1 or V2 do notontribute to the above sum, while eah edge between V1and V2 ontributes a value of 4 times the edge-weight. tu
3.2 Eigenvectors as optimal partition vectorsClearly, by Theorem 2, the ut is minimized by the trivialsolution when all pi are either -1 or +1. Informally, the utaptures the assoiation between di�erent partitions. Weneed an objetive funtion that in addition to small ut val-ues also aptures the need for more \balaned" lusters.We now present suh an objetive funtion. Let eahvertex i be assoiated with a positive weight, denoted byweight(i), and letW be the diagonal matrix of suh weights.For a subset of verties V l de�ne its weight to be weight(V l) =Pi2V l weight(i) =Pi2V l Wii. We onsider subsets V1 andV2 to be \balaned" if their respetive weights are equal.The following objetive funtion favors balaned lusters,Q(V1;V2) = ut(V1;V2)weight(V1) + ut(V1;V2)weight(V2) : (7)Given two di�erent partitionings with the same ut value,the above objetive funtion value is smaller for the morebalaned partitioning. Thus minimizing Q(V1;V2) favorspartitions that have a small ut value and are balaned.We now show that the Rayleigh Quotient of the follow-ing generalized partition vetor q equals the above objetivefuntion value.

Lemma 1. Given graph G, let L and W be its Laplaianand vertex weight matries respetively. Let �1 = weight(V1)and �2 = weight(V2). Then the generalized partition ve-tor q with elementsqi = 8<: +q�2�1 ; i 2 V1;�q�1�2 ; i 2 V2;satis�es qTWe = 0, and qTWq = weight(V).Proof. Let y =We, then yi = weight(i) =Wii. ThusqTWe = r�2�1 Xi2V1 weight(i)�r�1�2 Xi2V2 weight(i) = 0:Similarly qTWq =Pni=1Wiiq2i = �1 + �2 = weight(V). tuTheorem 3. Using the notation of Lemma 1,qTLqqTWq = ut(V1;V2)weight(V1) + ut(V1;V2)weight(V2) :Proof. It is easy to show that the generalized partitionvetor q may be written asq = �1 + �22p�1�2 p+ �2 � �12p�1�2 e;where p is the partition vetor of (6). Using part 7 of The-orem 1, we see thatqTLq = (�1 + �2)24�1�2 pTLp:Substituting the values of pTLp and qTWq, from Theo-rem 2 and Lemma 1 respetively, proves the result. tuThus to �nd the global minimum of (7), we an restritour attention to generalized partition vetors of the form inLemma 1. Even though this problem is still NP-omplete,the following theorem shows that it is possible to �nd a realrelaxation to the optimal generalized partition vetor.Theorem 4. The problemminq 6=0 qTLqqTWq ; subjet to qTWe = 0;is solved when q is the eigenvetor orresponding to the 2ndsmallest eigenvalue �2 of the generalized eigenvalue problem,Lz = �Wz: (8)Proof. This is a standard result from linear algebra[13℄. tu
3.3 Ratio-cut and Normalized-cut objectivesThus far we have not spei�ed the partiular hoie ofvertex weights. A simple hoie is to have weight(i) = 1 forall verties i. This leads to the ratio-ut objetive whih hasbeen onsidered in [14℄ (for iruit partitioning),Ratio-ut(V1;V2) = ut(V1;V2)jV1j + ut(V1;V2)jV2j :An interesting hoie is to make the weight of eah ver-tex equal to the sum of the weights of edges inident on it,i.e., weight(i) = Pk Eik. This leads to the normalized-ut riterion that was used in [22℄ for image segmentation.Note that for this hoie of vertex weights, the vertex weightmatrix W equals the degree matrix D, and weight(V i) =
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ut(V1;V2)+within(Vi) for i = 1; 2, where within(Vi) is thesum of the weights of edges with both end-points in Vi. Thenthe normalized-ut objetive funtion may be expressed asN (V1;V2) = ut(V1;V2)Pi2V1Pk Eik + ut(V1;V2)Pi2V2Pk Eik ;= 2�S(V1;V2);where S(V1;V2) = within(V1)weight(V1) + within(V2)weight(V2) :Note that S(V1;V2) measures the strengths of assoiationswithin eah partition. Thus minimizing the normalized-utis equivalent to maximizing the proportion of edge weightsthat lie within eah partition.
4. THE SVD CONNECTIONIn the previous setion, we saw that the seond eigenvetorof the generalized eigenvalue problem Lz = �Dz providesa real relaxation to the disrete optimization problem of�nding the minimum normalized ut. In this setion, wepresent algorithms to �nd doument and word lusteringsusing our bipartite graph model. In the bipartite ase,L = � D1 �A�AT D2 � ; and D = � D1 00 D2 �whereD1 andD2 are diagonal matries suh thatD1(i; i) =Pj Aij ; D2(j; j) = PiAij . Thus Lz = �Dz may bewritten as� D1 �A�AT D2 �� xy � = �� D1 00 D2 � � xy � (9)Assuming that both D1 and D2 are nonsingular, we anrewrite the above equations asD11=2x�D1�1=2Ay = �D11=2x;�D2�1=2ATx+D21=2y = �D21=2y:Letting u = D11=2x and v = D21=2y, and after a littlealgebrai manipulation, we getD1�1=2AD2�1=2v = (1� �)u;D2�1=2ATD1�1=2u = (1� �)v:These are preisely the equations that de�ne the singularvalue deomposition (SVD) of the normalized matrix An =D1�1=2AD2�1=2. In partiular, u and v are the left andright singular vetors respetively, while (1 � �) is the or-responding singular value. Thus instead of omputing theeigenvetor of the seond (smallest) eigenvalue of (9), we anompute the left and right singular vetors orresponding tothe seond (largest) singular value of An,Anv2 = �2u2; AnTu2 = �2v2; (10)where �2 = 1 � �2. Computationally, working on An ismuh better sine An is of size w � d while the matrix Lis of the larger size (w + d)� (w + d).The right singular vetor v2 will give us a bipartitioningof douments while the left singular vetor u2 will give us abipartitioning of the words. By examining the relations (10)it is lear that this solution agrees with our intuition thata partitioning of douments should indue a partitioning ofwords, while a partitioning of words should imply a parti-tioning of douments.

4.1 The Bipartitioning AlgorithmThe singular vetors u2 and v2 of An give a real approx-imation to the disrete optimization problem of minimizingthe normalized ut. Given u2 and v2 the key task is toextrat the optimal partition from these vetors.The optimal generalized partition vetor of Lemma 1 istwo-valued. Thus our strategy is to look for a bi-modaldistribution in the values of u2 and v2. Let m1 and m2denote the bi-modal values that we are looking for. Fromthe previous setion, the seond eigenvetor of L is given byz2 = � D1�1=2u2D2�1=2v2 � : (11)One way to approximate the optimal bipartitioning is by theassignment of z2(i) to the bi-modal valuesmj (j = 1; 2) suhthat the following sum-of-squares riterion is minimized,2Xj=1 Xz2(i)2mj(z2(i)�mj)2:The above is exatly the objetive funtion that the lassialk-means algorithm tries to minimize[9℄. Thus we use thefollowing algorithm to o-luster words and douments:Algorithm Bipartition1. Given A, form An =D1�1=2AD2�1=2.2. Compute the seond singular vetors of An, u2 and v2and form the vetor z2 as in (11).3. Run the k-means algorithm on the 1-dimensional data z2to obtain the desired bipartitioning.The surprising aspet of the above algorithm is that werun k-means simultaneously on the redued representationsof both words and douments to get the o-lustering.
4.2 The Multipartitioning AlgorithmWe an adapt our bipartitioning algorithm for the moregeneral problem of �nding k word and doument lusters.One possibility is to use Algorithm Bipartition in a reursivemanner. However, we favor a more diret approah. Justas the seond singular vetors ontain bi-modal informa-tion, the ` = dlog2 ke singular vetors u2;u3; : : : ;u`+1, andv2;v3; : : : ;v`+1 often ontain k-modal information aboutthe data set. Thus we an form the `-dimensional data setZ = � D1�1=2UD2�1=2V � ; (12)where U = [u2; : : : ;u`+1℄, and V = [v2; : : : ;v`+1℄. Fromthis redued-dimensional data set, we look for the best k-modal �t to the `-dimensional points m1; : : : ;mk by as-signing eah `-dimensional row, Z(i), to mj suh that thesum-of-squares kXj=1 Xz2(i)2mj kZ(i)�mjk2is minimized. This an again be done by the lassial k-means algorithm. Thus we obtain the following algorithm.Algorithm Multipartition(k)1. Given A, form An =D1�1=2AD2�1=2.2. Compute ` = dlog2 ke singular vetors of An, u2; : : :u`+1and v2; : : :v`+1, and form the matrix Z as in (12).3. Run the k-means algorithm on the `-dimensional data Zto obtain the desired k-way multipartitioning.
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Name # Dos # Words # Nonzeros(A)MedCran 2433 5042 117987MedCran All 2433 17162 224325MedCisi 2493 5447 109119MedCisi All 2493 19194 213453Classi3 3893 4303 176347Classi3 30dos 30 1073 1585Classi3 150dos 150 3652 7960Yahoo K5 2340 1458 237969Yahoo K1 2340 21839 349792Table 1: Details of the data sets
5. EXPERIMENTAL RESULTSFor some of our experiments, we used the popular Med-line (1033 medial abstrats), Cran�eld (1400 aeronautialsystems abstrats) and Cisi (1460 information retrieval ab-strats) olletions. These doument sets an be down-loaded from ftp://ftp.s.ornell.edu/pub/smart. For testingAlgorithm Bipartition, we reated mixtures onsisting of 2of these 3 olletions. For example, MedCran ontains dou-ments from the Medline and Cran�eld olletions. Typially,we removed stop words, and words ourring in < 0:2% and> 15% of the douments. However, our algorithm has anin-built saling sheme and is robust in the presene of largenumber of noise words, so we also formed word-doumentmatries by inluding all words, even stop words.For testing Algorithm Multipartition, we reated the Clas-si3 data set by mixing together Medline, Cran�eld and Cisiwhih gives a total of 3893 douments. To show that ouralgorithm works well on small data sets, we also reatedsubsets of Classi3 with 30 and 150 douments respetively.Our �nal data set is a olletion of 2340 Reuters newsartiles downloaded from Yahoo in Otober 1997[2℄. Theartiles are from 6 ategories: 142 from Business, 1384 fromEntertainment, 494 from Health, 114 from Politis, 141 fromSports and 60 news artiles from Tehnology. In the prepro-essing, HTML tags were removed and words were stemmedusing Porter's algorithm. We used 2 matries from this ol-letion: Yahoo K5 ontains 1458 words while Yahoo K1 in-ludes all 21839 words obtained after removing stop words.Details on all our test olletions are given in Table 1.
5.1 Bipartitioning ResultsIn this setion, we present bipartitioning results on theMedCran and MedCisi olletions. Sine we know the \true"lass label for eah doument, the onfusion matrix ap-tures the goodness of doument lustering. In addition, themeasures of purity and entropy are easily derived from theonfusion matrix[6℄.Table 2 summarizes the results of applying Algorithm Bi-partition to the MedCran data set. The onfusion matrix atthe top of the table shows that the doument luster D0onsists entirely of the Medline olletion, while 1400 of the1407 douments in D1 are from Cran�eld. The bottom ofTable 2 displays the \top" 7 words in eah of the word lus-ters W0 and W1. The top words are those whose internaledge weights are the greatest. By the o-lustering, the wordlusterWi is assoiated with doument luster Di. It shouldbe observed that the top 7 words learly onvey the \on-ept" of the assoiated doument luster.Similarly, Table 3 shows that good bipartitions are alsoobtained on theMedCisi data set. Algorithm Bipartition usesthe global spetral heuristi of using singular vetors whih

Medline Cran�eldD0: 1026 0D1: 7 1400W0: patients ells blood hildren hormone aner renalW1: shok heat supersoni wing transfer bukling laminarTable 2: Bipartitioning results for MedCranMedline CisiD0: 970 0D1: 63 1460W0: ells patients blood hormone renal rats anerW1: libraries retrieval sienti� researh siene system bookTable 3: Bipartitioning results for MedCisimakes it robust in the presene of \noise" words. To demon-strate this, we ran the algorithm on the data sets obtainedwithout removing even the stop words. The onfusion ma-tries of Table 4 show that the algorithm is able to reoverthe original lasses despite the presene of stop words.
5.2 Multipartitioning ResultsIn this setion, we show that Algorithm Multipartitiongives us good results. Table 5 gives the onfusion matrixfor the doument lusters and the top 7 words of the assoi-ated word lusters found in Classi3. Note that sine k = 3in this ase, the algorithm uses ` = dlog2 ke = 2 singularvetors for o-lustering.As mentioned earlier, the Yahoo K1 and Yahoo K5 datasets ontain 6 lasses of news artiles. Entertainment is thedominant lass ontaining 1384 douments while Tehnol-ogy ontains only 60 artiles. Hene the lasses are of variedsizes. Table 6 gives the multipartitioning result obtained byusing ` = dlog2 ke = 3 singular vetors. It is learly diÆ-ult to reover the original lasses. However, the preseneof many zeroes in the onfusion matrix is enouraging. Ta-ble 6 shows that lusters D1 and D2 onsist mainly of theEntertainment lass, while D4 and D5 are \purely" fromHealth and Sports respetively. The word lusters show theunderlying onepts in the assoiated doument lusters (re-all that the words are stemmed in this example). Table 7shows that similar doument lustering is obtained whenfewer words are used.Finally, AlgorithmMultipartition does well on small olle-tions also. Table 8 shows that even when mixing small (andrandom) subsets of Medline, Cisi and Cran�eld our algorithmis able to reover these lasses. This is in stark ontrast tothe spherial k-means algorithm that gives poor results onsmall doument olletions[7℄.
6. CONCLUSIONSIn this paper, we have introdued the novel idea of mod-eling a doument olletion as a bipartite graph using whihwe proposed a spetral algorithm for o-lustering words anddouments. This algorithm has some nie theoretial prop-erties as it provides the optimal solution to a real relaxationof the NP-omplete o-lustering objetive. In addition, ourMedline Cran�eldD0: 1014 0D1: 19 1400 Medline CisiD0: 925 0D1: 108 1460Table 4: Results for MedCran All and MedCisi All
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