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ABSTRACTBoth do
ument 
lustering and word 
lustering are well stud-ied problems. Most existing algorithms 
luster do
umentsand words separately but not simultaneously. In this paperwe present the novel idea of modeling the do
ument 
olle
-tion as a bipartite graph between do
uments and words, us-ing whi
h the simultaneous 
lustering problem 
an be posedas a bipartite graph partitioning problem. To solve the par-titioning problem, we use a new spe
tral 
o-
lustering algo-rithm that uses the se
ond left and right singular ve
tors ofan appropriately s
aled word-do
ument matrix to yield goodbipartitionings. The spe
tral algorithm enjoys some opti-mality properties; it 
an be shown that the singular ve
torssolve a real relaxation to the NP-
omplete graph bipartition-ing problem. We present experimental results to verify thatthe resulting 
o-
lustering algorithm works well in pra
ti
e.
1. INTRODUCTIONClustering is the grouping together of similar obje
ts. Givena 
olle
tion of unlabeled do
uments, do
ument 
lustering
an help in organizing the 
olle
tion thereby fa
ilitating fu-ture navigation and sear
h. A starting point for applying
lustering algorithms to do
ument 
olle
tions is to 
reatea ve
tor spa
e model [20℄. The basi
 idea is (a) to extra
tunique 
ontent-bearing words from the set of do
umentstreating these words as features and (b) to then representea
h do
ument as a ve
tor in this feature spa
e. Thus theentire do
ument 
olle
tion may be represented by a word-by-do
ument matrix A whose rows 
orrespond to words and
olumns to do
uments. A non-zero entry in A, say Aij , in-di
ates the presen
e of word i in do
ument j, while a zeroentry indi
ates an absen
e. Typi
ally, a large number ofwords exist in even a moderately sized set of do
uments, forexample, in one test 
ase we use 4303 words in 3893 do
u-ments. However, ea
h do
ument generally 
ontains only asmall number of words and hen
e, A is typi
ally very sparsewith almost 99% of the matrix entries being zero.Existing do
ument 
lustering methods in
lude agglomer-
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ative 
lustering[25℄, the partitional k-means algorithm[7℄,proje
tion based methods in
luding LSA[21℄, self-organizingmaps[18℄ and multidimensional s
aling[16℄. For 
omputa-tional eÆ
ien
y required in on-line 
lustering, hybrid ap-proa
hes have been 
onsidered su
h as in[5℄. Graph-theoreti
te
hniques have also been 
onsidered for 
lustering; manyearlier hierar
hi
al agglomerative 
lustering algorithms[9℄ andsome re
ent work[3, 23℄ model the similarity between do
u-ments by a graph whose verti
es 
orrespond to do
umentsand weighted edges or hyperedges give the similarity be-tween verti
es. However these methods are 
omputationallyprohibitive for large 
olle
tions sin
e the amount of workrequired just to form the graph is quadrati
 in the numberof do
uments.Words may be 
lustered on the basis of the do
uments inwhi
h they 
o-o

ur; su
h 
lustering has been used in theautomati
 
onstru
tion of a statisti
al thesaurus and in theenhan
ement of queries[4℄. The underlying assumption isthat words that typi
ally appear together should be asso
i-ated with similar 
on
epts. Word 
lustering has also beenpro�tably used in the automati
 
lassi�
ation of do
uments,see[1℄. More on word 
lustering may be found in [24℄.In this paper, we 
onsider the problem of simultaneous or
o-
lustering of do
uments and words. Most of the existingwork is on one-way 
lustering, i.e., either do
ument or word
lustering. A 
ommon theme among existing algorithms isto 
luster do
uments based upon their word distributionswhile word 
lustering is determined by 
o-o

urren
e in do
-uments. This points to a duality between do
ument andterm 
lustering. We pose this dual 
lustering problem interms of �nding minimum 
ut vertex partitions in a bipar-tite graph between do
uments and words. Finding a globallyoptimal solution to su
h a graph partitioning problem is NP-
omplete; however, we show that the se
ond left and rightsingular ve
tors of a suitably normalized word-do
umentmatrix give an optimal solution to the real relaxation ofthis dis
rete optimization problem. Based upon this obser-vation, we present a spe
tral algorithm that simultaneouslypartitions do
uments and words, and demonstrate that thealgorithm gives good global solutions in pra
ti
e.A word about notation: small-bold letters su
h as x, u,p will denote 
olumn ve
tors, 
apital-bold letters su
h asA, M , B will denote matri
es, and s
ript letters su
h asV;D;W will usually denote vertex sets.
2. BIPARTITE GRAPH MODELFirst we introdu
e some relevant terminology about graphs.A graph G = (V; E) is a set of verti
es V = f1; 2; : : : ; jVjg
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and a set of edges fi; jg ea
h with edge weight Eij . Theadja
en
y matrixM of a graph is de�ned byMij = � Eij ; if there is an edge fi; jg;0; otherwise:Given a partitioning of the vertex set V into two subsetsV1 and V2, the 
ut between them will play an importantrole in this paper. Formally,
ut(V1;V2) = Xi2V1;j2V2Mij : (1)The de�nition of 
ut is easily extended to k vertex subsets,
ut(V1;V2; : : : ;Vk) = Xi<j 
ut(Vi;Vj): (2)We now introdu
e our bipartite graph model for represent-ing a do
ument 
olle
tion. An undire
ted bipartite graphis a triple G = (D;W ; E) where D = fd1; : : : ; dng, W =fw1; : : : ; wmg are two sets of verti
es and E is the set ofedges ffdi; wjg : di 2 D; wj 2 Wg. In our 
ase D is the setof do
uments and W is the set of words they 
ontain. Anedge fdi; wjg exists if word wj o

urs in do
ument di; notethat the edges are undire
ted. In this model, there are noedges between words or between do
uments.An edge signi�es an asso
iation between a do
ument anda word. By putting positive weights on the edges, we 
an
apture the strength of this asso
iation. One possibility isto have edge-weights equal term frequen
ies. In fa
t, mostof the term-weighting formulae used in information retrievalmay be used as edge-weights, see [20℄ for more details.Consider them�n word-by-do
ument matrixA su
h thatAij equals the edge-weight Eij . It is easy to verify that theadja
en
y matrix of the bipartite graph may be written asM = � 0 AAT 0 � ;where we have ordered the verti
es su
h that the �rstm ver-ti
es index the words while the last n index the do
uments.We now show that the 
ut between di�erent vertex sub-sets, as de�ned in (1) and (2), emerges naturally from ourformulation of word and do
ument 
lustering.
2.1 Simultaneous ClusteringA basi
 premise behind our algorithm is the observation:Duality of word & do
ument 
lustering: Word 
luster-ing indu
es do
ument 
lustering while do
ument 
lusteringindu
es word 
lustering.Given disjoint do
ument 
lusters D1; : : : ;Dk, the 
orre-sponding word 
lusters W1; : : : ;Wk may be determined asfollows. A given word wi belongs to the word 
luster Wmif its asso
iation with the do
ument 
luster Dm is greaterthan its asso
iation with any other do
ument 
luster. Usingour graph model, a natural measure of the asso
iation of aword with a do
ument 
luster is the sum of the edge-weightsto all do
uments in the 
luster. Thus,Wm = 8<:wi : Xj2DmAij � Xj2DlAij ; 8 l = 1; : : : ; k9=; :Thus ea
h of the word 
lusters is determined by the do
u-ment 
lustering. Similarly given word 
lusters W1; : : : ;Wk,

the indu
ed do
ument 
lustering is given byDm = 8<:dj : Xi2WmAij � Xi2W lAij ; 8 l = 1; : : : ; k9=; :Note that this 
hara
terization is re
ursive in nature sin
edo
ument 
lusters determine word 
lusters, whi
h in turndetermine (better) do
ument 
lusters. Clearly the \best"word and do
ument 
lustering would 
orrespond to a par-titioning of the graph su
h that the 
rossing edges betweenpartitions have minimum weight. This is a
hieved when
ut(W1 [ D1; : : : ;Wk [ Dk) = minV1;::: ;Vk 
ut(V1; : : : ;Vk)where V1; : : : ;Vk is any k-partitioning of the bipartite graph.
3. GRAPH PARTITIONINGGiven a graph G = (V; E), the 
lassi
al graph bipartition-ing problem is to �nd nearly equally-sized vertex subsetsV�1;V�2 of V su
h that 
ut(V�1;V�2) = minV1;V2 
ut(V1;V2).Graph partitioning is an important problem and arises invarious appli
ations, su
h as 
ir
uit partitioning, telephonenetwork design, load balan
ing in parallel 
omputation, et
.However it is well known that this problem is NP-
omplete[12℄.But many e�e
tive heuristi
 methods exist, su
h as, theKernighan-Lin(KL)[17℄ and the Fidu

ia-Mattheyses(FM)[10℄algorithms. However, both the KL and FM algorithms sear
hin the lo
al vi
inity of given initial partitionings and have atenden
y to get stu
k in lo
al minima.
3.1 Spectral Graph BipartitioningSpe
tral graph partitioning is another e�e
tive heuristi
that was introdu
ed in the early 1970s[15, 8, 11℄, and pop-ularized in 1990[19℄. Spe
tral partitioning generally givesbetter global solutions than the KL or FM methods.We now introdu
e the spe
tral partitioning heuristi
. Sup-pose the graph G = (V ; E) has n verti
es and m edges. Then�m in
iden
e matrix of G, denoted by IG has one row pervertex and one 
olumn per edge. The 
olumn 
orrespondingto edge fi; jg of IG is zero ex
ept for the i-th and j-th en-tries, whi
h arepEij and �pEij respe
tively, where Eij isthe 
orresponding edge weight. Note that there is some am-biguity in this de�nition, sin
e the positions of the positiveand negative entries seem arbitrary. However this ambiguitywill not be important to us.Definition 1. The Lapla
ian matrix L = LG of G is ann� n symmetri
 matrix, with one row and 
olumn for ea
hvertex, su
h thatLij = 8<: Pk Eik; i = j�Eij ; i 6= j and there is an edge fi; jg0 otherwise: (3)Theorem 1. The Lapla
ian matrix L = LG of the graphG has the following properties.1. L =D�M , where M is the adja
en
y matrix and Dis the diagonal \degree" matrix with Dii =Pk Eik.2. L = IGIGT .3. L is a symmetri
 positive semi-de�nite matrix. Thusall eigenvalues of L are real and non-negative, and Lhas a full set of n real and orthogonal eigenve
tors.4. Let e = [1; : : : ; 1℄T . Then Le = 0. Thus 0 is aneigenvalue of L and e is the 
orresponding eigenve
tor.
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5. If the graph G has 
 
onne
ted 
omponents then L has
 eigenvalues that equal 0.6. For any ve
tor x, xTLx =Pfi;jg2E Eij(xi � xj)2.7. For any ve
tor x, and s
alars � and �(�x+ �e)TL(�x+ �e) = �2xTLx: (4)Proof.1. Part 1 follows from the de�nition of L.2. This is easily seen by multiplying IG and IGT .3. By part 2, xTLx = xT IGITGx = yTy � 0, for allx. This implies that L is symmetri
 positive semi-de�nite. All su
h matri
es have non-negative real eigen-values and a full set of n orthogonal eigenve
tors[13℄.4. Given any ve
tor x, Lx = IG(IGTx). Let k be therow of IGTx that 
orresponds to the edge fi; jg, thenit is easy to see that(IGTx)k = pEij(xi � xj); (5)and so when x = e, Le = 0.5. See [11℄.6. This follows from equation (5).7. This follows from part 4 above. tuFor the rest of the paper, we will assume that the graph G
onsists of exa
tly one 
onne
ted 
omponent. We now seehow the eigenvalues and eigenve
tors of L give us informa-tion about partitioning the graph. Given a bipartitioningof V into V1 and V2 (V1 [ V2 = V), let us de�ne the parti-tion ve
tor p that 
aptures this division,pi = � +1; i 2 V1;�1; i 2 V2: (6)Theorem 2. Given the Lapla
ian matrix L of G and apartition ve
tor p, the Rayleigh QuotientpTLppTp = 1n � 4 
ut(V1;V2):Proof. Clearly pTp = n. By part 6 of Theorem 1, pTLp =Pfi;jg2E Eij(pi � pj)2. Thus edges within V1 or V2 do not
ontribute to the above sum, while ea
h edge between V1and V2 
ontributes a value of 4 times the edge-weight. tu
3.2 Eigenvectors as optimal partition vectorsClearly, by Theorem 2, the 
ut is minimized by the trivialsolution when all pi are either -1 or +1. Informally, the 
ut
aptures the asso
iation between di�erent partitions. Weneed an obje
tive fun
tion that in addition to small 
ut val-ues also 
aptures the need for more \balan
ed" 
lusters.We now present su
h an obje
tive fun
tion. Let ea
hvertex i be asso
iated with a positive weight, denoted byweight(i), and letW be the diagonal matrix of su
h weights.For a subset of verti
es V l de�ne its weight to be weight(V l) =Pi2V l weight(i) =Pi2V l Wii. We 
onsider subsets V1 andV2 to be \balan
ed" if their respe
tive weights are equal.The following obje
tive fun
tion favors balan
ed 
lusters,Q(V1;V2) = 
ut(V1;V2)weight(V1) + 
ut(V1;V2)weight(V2) : (7)Given two di�erent partitionings with the same 
ut value,the above obje
tive fun
tion value is smaller for the morebalan
ed partitioning. Thus minimizing Q(V1;V2) favorspartitions that have a small 
ut value and are balan
ed.We now show that the Rayleigh Quotient of the follow-ing generalized partition ve
tor q equals the above obje
tivefun
tion value.

Lemma 1. Given graph G, let L and W be its Lapla
ianand vertex weight matri
es respe
tively. Let �1 = weight(V1)and �2 = weight(V2). Then the generalized partition ve
-tor q with elementsqi = 8<: +q�2�1 ; i 2 V1;�q�1�2 ; i 2 V2;satis�es qTWe = 0, and qTWq = weight(V).Proof. Let y =We, then yi = weight(i) =Wii. ThusqTWe = r�2�1 Xi2V1 weight(i)�r�1�2 Xi2V2 weight(i) = 0:Similarly qTWq =Pni=1Wiiq2i = �1 + �2 = weight(V). tuTheorem 3. Using the notation of Lemma 1,qTLqqTWq = 
ut(V1;V2)weight(V1) + 
ut(V1;V2)weight(V2) :Proof. It is easy to show that the generalized partitionve
tor q may be written asq = �1 + �22p�1�2 p+ �2 � �12p�1�2 e;where p is the partition ve
tor of (6). Using part 7 of The-orem 1, we see thatqTLq = (�1 + �2)24�1�2 pTLp:Substituting the values of pTLp and qTWq, from Theo-rem 2 and Lemma 1 respe
tively, proves the result. tuThus to �nd the global minimum of (7), we 
an restri
tour attention to generalized partition ve
tors of the form inLemma 1. Even though this problem is still NP-
omplete,the following theorem shows that it is possible to �nd a realrelaxation to the optimal generalized partition ve
tor.Theorem 4. The problemminq 6=0 qTLqqTWq ; subje
t to qTWe = 0;is solved when q is the eigenve
tor 
orresponding to the 2ndsmallest eigenvalue �2 of the generalized eigenvalue problem,Lz = �Wz: (8)Proof. This is a standard result from linear algebra[13℄. tu
3.3 Ratio-cut and Normalized-cut objectivesThus far we have not spe
i�ed the parti
ular 
hoi
e ofvertex weights. A simple 
hoi
e is to have weight(i) = 1 forall verti
es i. This leads to the ratio-
ut obje
tive whi
h hasbeen 
onsidered in [14℄ (for 
ir
uit partitioning),Ratio-
ut(V1;V2) = 
ut(V1;V2)jV1j + 
ut(V1;V2)jV2j :An interesting 
hoi
e is to make the weight of ea
h ver-tex equal to the sum of the weights of edges in
ident on it,i.e., weight(i) = Pk Eik. This leads to the normalized-
ut 
riterion that was used in [22℄ for image segmentation.Note that for this 
hoi
e of vertex weights, the vertex weightmatrix W equals the degree matrix D, and weight(V i) =
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ut(V1;V2)+within(Vi) for i = 1; 2, where within(Vi) is thesum of the weights of edges with both end-points in Vi. Thenthe normalized-
ut obje
tive fun
tion may be expressed asN (V1;V2) = 
ut(V1;V2)Pi2V1Pk Eik + 
ut(V1;V2)Pi2V2Pk Eik ;= 2�S(V1;V2);where S(V1;V2) = within(V1)weight(V1) + within(V2)weight(V2) :Note that S(V1;V2) measures the strengths of asso
iationswithin ea
h partition. Thus minimizing the normalized-
utis equivalent to maximizing the proportion of edge weightsthat lie within ea
h partition.
4. THE SVD CONNECTIONIn the previous se
tion, we saw that the se
ond eigenve
torof the generalized eigenvalue problem Lz = �Dz providesa real relaxation to the dis
rete optimization problem of�nding the minimum normalized 
ut. In this se
tion, wepresent algorithms to �nd do
ument and word 
lusteringsusing our bipartite graph model. In the bipartite 
ase,L = � D1 �A�AT D2 � ; and D = � D1 00 D2 �whereD1 andD2 are diagonal matri
es su
h thatD1(i; i) =Pj Aij ; D2(j; j) = PiAij . Thus Lz = �Dz may bewritten as� D1 �A�AT D2 �� xy � = �� D1 00 D2 � � xy � (9)Assuming that both D1 and D2 are nonsingular, we 
anrewrite the above equations asD11=2x�D1�1=2Ay = �D11=2x;�D2�1=2ATx+D21=2y = �D21=2y:Letting u = D11=2x and v = D21=2y, and after a littlealgebrai
 manipulation, we getD1�1=2AD2�1=2v = (1� �)u;D2�1=2ATD1�1=2u = (1� �)v:These are pre
isely the equations that de�ne the singularvalue de
omposition (SVD) of the normalized matrix An =D1�1=2AD2�1=2. In parti
ular, u and v are the left andright singular ve
tors respe
tively, while (1 � �) is the 
or-responding singular value. Thus instead of 
omputing theeigenve
tor of the se
ond (smallest) eigenvalue of (9), we 
an
ompute the left and right singular ve
tors 
orresponding tothe se
ond (largest) singular value of An,Anv2 = �2u2; AnTu2 = �2v2; (10)where �2 = 1 � �2. Computationally, working on An ismu
h better sin
e An is of size w � d while the matrix Lis of the larger size (w + d)� (w + d).The right singular ve
tor v2 will give us a bipartitioningof do
uments while the left singular ve
tor u2 will give us abipartitioning of the words. By examining the relations (10)it is 
lear that this solution agrees with our intuition thata partitioning of do
uments should indu
e a partitioning ofwords, while a partitioning of words should imply a parti-tioning of do
uments.

4.1 The Bipartitioning AlgorithmThe singular ve
tors u2 and v2 of An give a real approx-imation to the dis
rete optimization problem of minimizingthe normalized 
ut. Given u2 and v2 the key task is toextra
t the optimal partition from these ve
tors.The optimal generalized partition ve
tor of Lemma 1 istwo-valued. Thus our strategy is to look for a bi-modaldistribution in the values of u2 and v2. Let m1 and m2denote the bi-modal values that we are looking for. Fromthe previous se
tion, the se
ond eigenve
tor of L is given byz2 = � D1�1=2u2D2�1=2v2 � : (11)One way to approximate the optimal bipartitioning is by theassignment of z2(i) to the bi-modal valuesmj (j = 1; 2) su
hthat the following sum-of-squares 
riterion is minimized,2Xj=1 Xz2(i)2mj(z2(i)�mj)2:The above is exa
tly the obje
tive fun
tion that the 
lassi
alk-means algorithm tries to minimize[9℄. Thus we use thefollowing algorithm to 
o-
luster words and do
uments:Algorithm Bipartition1. Given A, form An =D1�1=2AD2�1=2.2. Compute the se
ond singular ve
tors of An, u2 and v2and form the ve
tor z2 as in (11).3. Run the k-means algorithm on the 1-dimensional data z2to obtain the desired bipartitioning.The surprising aspe
t of the above algorithm is that werun k-means simultaneously on the redu
ed representationsof both words and do
uments to get the 
o-
lustering.
4.2 The Multipartitioning AlgorithmWe 
an adapt our bipartitioning algorithm for the moregeneral problem of �nding k word and do
ument 
lusters.One possibility is to use Algorithm Bipartition in a re
ursivemanner. However, we favor a more dire
t approa
h. Justas the se
ond singular ve
tors 
ontain bi-modal informa-tion, the ` = dlog2 ke singular ve
tors u2;u3; : : : ;u`+1, andv2;v3; : : : ;v`+1 often 
ontain k-modal information aboutthe data set. Thus we 
an form the `-dimensional data setZ = � D1�1=2UD2�1=2V � ; (12)where U = [u2; : : : ;u`+1℄, and V = [v2; : : : ;v`+1℄. Fromthis redu
ed-dimensional data set, we look for the best k-modal �t to the `-dimensional points m1; : : : ;mk by as-signing ea
h `-dimensional row, Z(i), to mj su
h that thesum-of-squares kXj=1 Xz2(i)2mj kZ(i)�mjk2is minimized. This 
an again be done by the 
lassi
al k-means algorithm. Thus we obtain the following algorithm.Algorithm Multipartition(k)1. Given A, form An =D1�1=2AD2�1=2.2. Compute ` = dlog2 ke singular ve
tors of An, u2; : : :u`+1and v2; : : :v`+1, and form the matrix Z as in (12).3. Run the k-means algorithm on the `-dimensional data Zto obtain the desired k-way multipartitioning.
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Name # Do
s # Words # Nonzeros(A)MedCran 2433 5042 117987MedCran All 2433 17162 224325MedCisi 2493 5447 109119MedCisi All 2493 19194 213453Classi
3 3893 4303 176347Classi
3 30do
s 30 1073 1585Classi
3 150do
s 150 3652 7960Yahoo K5 2340 1458 237969Yahoo K1 2340 21839 349792Table 1: Details of the data sets
5. EXPERIMENTAL RESULTSFor some of our experiments, we used the popular Med-line (1033 medi
al abstra
ts), Cran�eld (1400 aeronauti
alsystems abstra
ts) and Cisi (1460 information retrieval ab-stra
ts) 
olle
tions. These do
ument sets 
an be down-loaded from ftp://ftp.
s.
ornell.edu/pub/smart. For testingAlgorithm Bipartition, we 
reated mixtures 
onsisting of 2of these 3 
olle
tions. For example, MedCran 
ontains do
u-ments from the Medline and Cran�eld 
olle
tions. Typi
ally,we removed stop words, and words o

urring in < 0:2% and> 15% of the do
uments. However, our algorithm has anin-built s
aling s
heme and is robust in the presen
e of largenumber of noise words, so we also formed word-do
umentmatri
es by in
luding all words, even stop words.For testing Algorithm Multipartition, we 
reated the Clas-si
3 data set by mixing together Medline, Cran�eld and Cisiwhi
h gives a total of 3893 do
uments. To show that ouralgorithm works well on small data sets, we also 
reatedsubsets of Classi
3 with 30 and 150 do
uments respe
tively.Our �nal data set is a 
olle
tion of 2340 Reuters newsarti
les downloaded from Yahoo in O
tober 1997[2℄. Thearti
les are from 6 
ategories: 142 from Business, 1384 fromEntertainment, 494 from Health, 114 from Politi
s, 141 fromSports and 60 news arti
les from Te
hnology. In the prepro-
essing, HTML tags were removed and words were stemmedusing Porter's algorithm. We used 2 matri
es from this 
ol-le
tion: Yahoo K5 
ontains 1458 words while Yahoo K1 in-
ludes all 21839 words obtained after removing stop words.Details on all our test 
olle
tions are given in Table 1.
5.1 Bipartitioning ResultsIn this se
tion, we present bipartitioning results on theMedCran and MedCisi 
olle
tions. Sin
e we know the \true"
lass label for ea
h do
ument, the 
onfusion matrix 
ap-tures the goodness of do
ument 
lustering. In addition, themeasures of purity and entropy are easily derived from the
onfusion matrix[6℄.Table 2 summarizes the results of applying Algorithm Bi-partition to the MedCran data set. The 
onfusion matrix atthe top of the table shows that the do
ument 
luster D0
onsists entirely of the Medline 
olle
tion, while 1400 of the1407 do
uments in D1 are from Cran�eld. The bottom ofTable 2 displays the \top" 7 words in ea
h of the word 
lus-ters W0 and W1. The top words are those whose internaledge weights are the greatest. By the 
o-
lustering, the word
lusterWi is asso
iated with do
ument 
luster Di. It shouldbe observed that the top 7 words 
learly 
onvey the \
on-
ept" of the asso
iated do
ument 
luster.Similarly, Table 3 shows that good bipartitions are alsoobtained on theMedCisi data set. Algorithm Bipartition usesthe global spe
tral heuristi
 of using singular ve
tors whi
h

Medline Cran�eldD0: 1026 0D1: 7 1400W0: patients 
ells blood 
hildren hormone 
an
er renalW1: sho
k heat supersoni
 wing transfer bu
kling laminarTable 2: Bipartitioning results for MedCranMedline CisiD0: 970 0D1: 63 1460W0: 
ells patients blood hormone renal rats 
an
erW1: libraries retrieval s
ienti�
 resear
h s
ien
e system bookTable 3: Bipartitioning results for MedCisimakes it robust in the presen
e of \noise" words. To demon-strate this, we ran the algorithm on the data sets obtainedwithout removing even the stop words. The 
onfusion ma-tri
es of Table 4 show that the algorithm is able to re
overthe original 
lasses despite the presen
e of stop words.
5.2 Multipartitioning ResultsIn this se
tion, we show that Algorithm Multipartitiongives us good results. Table 5 gives the 
onfusion matrixfor the do
ument 
lusters and the top 7 words of the asso
i-ated word 
lusters found in Classi
3. Note that sin
e k = 3in this 
ase, the algorithm uses ` = dlog2 ke = 2 singularve
tors for 
o-
lustering.As mentioned earlier, the Yahoo K1 and Yahoo K5 datasets 
ontain 6 
lasses of news arti
les. Entertainment is thedominant 
lass 
ontaining 1384 do
uments while Te
hnol-ogy 
ontains only 60 arti
les. Hen
e the 
lasses are of variedsizes. Table 6 gives the multipartitioning result obtained byusing ` = dlog2 ke = 3 singular ve
tors. It is 
learly diÆ-
ult to re
over the original 
lasses. However, the presen
eof many zeroes in the 
onfusion matrix is en
ouraging. Ta-ble 6 shows that 
lusters D1 and D2 
onsist mainly of theEntertainment 
lass, while D4 and D5 are \purely" fromHealth and Sports respe
tively. The word 
lusters show theunderlying 
on
epts in the asso
iated do
ument 
lusters (re-
all that the words are stemmed in this example). Table 7shows that similar do
ument 
lustering is obtained whenfewer words are used.Finally, AlgorithmMultipartition does well on small 
olle
-tions also. Table 8 shows that even when mixing small (andrandom) subsets of Medline, Cisi and Cran�eld our algorithmis able to re
over these 
lasses. This is in stark 
ontrast tothe spheri
al k-means algorithm that gives poor results onsmall do
ument 
olle
tions[7℄.
6. CONCLUSIONSIn this paper, we have introdu
ed the novel idea of mod-eling a do
ument 
olle
tion as a bipartite graph using whi
hwe proposed a spe
tral algorithm for 
o-
lustering words anddo
uments. This algorithm has some ni
e theoreti
al prop-erties as it provides the optimal solution to a real relaxationof the NP-
omplete 
o-
lustering obje
tive. In addition, ourMedline Cran�eldD0: 1014 0D1: 19 1400 Medline CisiD0: 925 0D1: 108 1460Table 4: Results for MedCran All and MedCisi All



Med Cisi CranD0: 965 0 0D1: 65 1458 10D2: 3 2 1390W0: patients 
ells blood hormone renal 
an
er ratsW1: library libraries retrieval s
ienti�
 s
ien
e book systemW2: boundary layer heat sho
k ma
h supersoni
 wingTable 5: Multipartitioning results for Classi
3Bus Entertain Health Politi
s Sports Te
hD0: 120 82 0 52 0 57D1: 0 833 0 1 100 0D2: 0 259 0 0 0 0D3: 22 215 102 61 1 3D4: 0 0 392 0 0 0D5: 0 0 0 0 40 0W0: 
linton 
ampaign senat house 
ourt �nan
 whiteW1: septemb tv am week musi
 set topW2: �lm emmi star hollywood award 
omedi �enneW3: world health new polit entertain te
h sportW4: surgeri injuri undergo hospit england a

ord re
ommendW5: republ advan
 wild
ard mat
h abdelatif a
 adolphTable 6: Multipartitioning results for Yahoo K1algorithm works well on real examples as illustrated by ourexperimental results.
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