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Splitting Methods for Convex Clustering

Eric C. CHI and Kenneth LANGE

Clustering is a fundamental problem in many scientific applications. Standard meth-
ods such as k-means, Gaussian mixture models, and hierarchical clustering, however,
are beset by local minima, which are sometimes drastically suboptimal. Recently intro-
duced convex relaxations of k-means and hierarchical clustering shrink cluster centroids
toward one another and ensure a unique global minimizer. In this work, we present two
splitting methods for solving the convex clustering problem. The first is an instance
of the alternating direction method of multipliers (ADMM); the second is an instance
of the alternating minimization algorithm (AMA). In contrast to previously considered
algorithms, our ADMM and AMA formulations provide simple and unified frameworks
for solving the convex clustering problem under the previously studied norms and open
the door to potentially novel norms. We demonstrate the performance of our algorithm
on both simulated and real data examples. While the differences between the two algo-
rithms appear to be minor on the surface, complexity analysis and numerical experiments
show AMA to be significantly more efficient. This article has supplementary materials
available online.

Keywords: Alternating direction method of multipliers; Alternating minimization
algorithm; Convex optimization; Hierarchical clustering; k-means; Regularization paths.

1. INTRODUCTION

In recent years, convex relaxations of many fundamental, yet combinatorially hard, opti-
mization problems in engineering, applied mathematics, and statistics have been introduced
(Tropp 2006). Good, and sometimes nearly optimal solutions, can be achieved at afford-
able computational prices for problems that appear at first blush to be computationally
intractable. In this article, we introduce two new algorithmic frameworks based on variable
splitting that generalize and extend recent efforts to convexify the classic unsupervised
problem of clustering.

Lindsten, Ohlsson, and Ljung (2011) and Hocking et al. (2011) formulated the clustering
task as a convex optimization problem. Given n points x1, . . . , xn in Rp, they suggested
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SPLITTING METHODS FOR CONVEX CLUSTERING 995

Figure 1. A graph with positive weights w12, w15, w34 and all other weights wij = 0.

minimizing the convex criterion

Fγ (U) = 1

2

n∑
i=1

‖xi − ui‖2
2 + γ

∑
i<j

wij‖ui − uj‖, (1.1)

where γ is a positive tuning constant, wij = wji is a nonnegative weight, and the ith column
ui of the matrix U is the cluster center (centroid) attached to point xi . Lindsten, Ohlsson,
and Ljung (2011) considered an �q norm penalty on the differences ui − uj while Hocking
et al. (2011) considered �1, �2, and �∞ penalties. In the current article, an arbitrary norm
defines the penalty.

The objective function bears some similarity to the fused lasso signal approximator
(Tibshirani et al. 2005). When the �1 penalty is used in definition (1.1), we recover a
special case of the general fused lasso (Hoefling 2010; Tibshirani and Taylor 2011). In the
graphical interpretation of clustering, each point corresponds to a node in a graph, and an
edge connects nodes i and j whenever wij > 0. Figure 1 depicts an example. In this case,
the objective function Fγ (U) separates over the connected components of the underlying
graph. Thus, one can solve for the optimal U component by component. Without loss of
generality, we assume the graph is connected.

When γ = 0, the minimum is attained when ui = xi , and each point occupies a unique
cluster. As γ increases, the cluster centers begin to coalesce. Two points xi and xj with
ui = uj are said to belong to the same cluster. For sufficiently high γ , all points coalesce
into a single cluster. Because the objective function Fγ (U) in Equation (1.1) is strictly
convex and coercive, it possesses a unique minimum point for each value of γ . If we plot
the solution matrix U as a function of γ , then we can ordinarily identify those values of
γ giving k clusters for any integer k between n and 1. In theory, k can decrement by more
than 1 as certain critical values of γ are passed. Indeed, when points are not well separated,
we observe that many centroids will coalesce abruptly unless care is taken in choosing the
weights wij .

The benefits of this formulation are manifold. As we will show, convex relaxation admits
a simple and fast iterative algorithm that is guaranteed to converge to the unique global
minimizer. In contrast, the classic k-means problem has been shown to be NP-hard (Aloise
et al. 2009; Dasgupta and Freund 2009). In addition, the classical greedy algorithm for
solving k-means clustering often gets trapped in suboptimal local minima (Forgy 1965;
MacQueen 1967; Lloyd 1982).

Another vexing issue in clustering is determining the number of clusters. Agglomerative
hierarchical clustering (Ward 1963; Johnson 1967; Lance and Williams 1967; Gower and
Ross 1969; Murtagh 1983) finesses the problem by computing an entire clustering path.
Agglomerative approaches, however, can be computationally demanding and tend to fall
into suboptimal local minima since coalescence events are not reversed. The alternative

D
ow

nl
oa

de
d 

by
 [

11
3.

10
7.

19
2.

13
3]

 a
t 0

3:
43

 1
5 

M
ar

ch
 2

01
6 

July
高亮文本

July
打字机
参考come on

July
打字机
由eg，根据他们的联系加权重

July
打字机
gamma可调节数

July
高亮文本

July
打字机
ui是每一族的中心点u1=u2，12归为一类

July
高亮文本

July
打字机
转置乘它

July
打字机
绝对值，分量p次方求和开p次方，向量分量最大值

July
打字机
gamma足够大，第一项忽略不计ui，uj都相等，第一项xi-u最小ui为xi均值

July
高亮文本

July
打字机
严格凸，唯一最小解

July
打字机
本文的范数用的是二范数



996 E. C. CHI AND K. LANGE

Figure 2. Cluster path assignment: The simulated example shows five well-separated clusters and the assigned
clustering generated by the convex clustering algorithm under an �2-norm. The lines trace the path of the individual
cluster centers as the regularization parameter γ increases.

convex relaxation considered here performs continuous clustering just as the lasso
(Tibshirani 1996; Chen, Donoho, and Saunders 1998) performs continuous variable se-
lection. Figure 2 shows how the solutions to the alternative convex problem traces out an
intuitively appealing, globally optimal, and computationally tractable solution path.

1.1 CONTRIBUTIONS

Our main contributions are two new methods for solving the convex clustering prob-
lem. Relatively little work has been published on algorithms for solving this optimization
problem. In fact, the only other article introducing dedicated algorithms for minimizing
criterion (1.1) that we are aware of is Hocking et al. (2011). Lindsten, Ohlsson, and Ljung
(2011) used the off-the-shelf convex solver CVX (CVX Research, Inc. 2012; Grant and
Boyd 2008) to generate solution paths. Hocking et al. (2011) noted that CVX is useful
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SPLITTING METHODS FOR CONVEX CLUSTERING 997

for solving small problems but a dedicated formulation is required for scalability. Thus,
they introduced three distinct algorithms for the three most commonly encountered norms.
Given the �1 norm and unit weights wij , the objective function separates, and they solved
the convex clustering problem by the exact path following method designed for the fused
lasso (Hoefling 2010). For the �1 and �2 norms with arbitrary weights wij , they employed
subgradient descent in conjunction with active sets. Finally, they solve the convex cluster-
ing problem under the �∞ norm by viewing it as minimization of a Frobenius norm over
a polytope. In this guise, the problem succumbs to the Frank–Wolfe algorithm (Frank and
Wolfe 1956) of quadratic programming.

In contrast to this piecemeal approach, we introduce two similar generic frameworks for
minimizing the convex clustering objective function with an arbitrary norm. One approach
solves the problem by the alternating direction method of multipliers (ADMM), while the
other solves it by the alternating minimization algorithm (AMA). The key step in both cases
computes the proximal map of a given norm. Consequently, both of our algorithms apply
provided the penalty norm admits efficient computation of its proximal map.

In addition to introducing new algorithms for solving the convex clustering problem, the
current article contributes in other concrete ways: (a) We combine existing results on AMA
and ADMM with the special structure of the convex clustering problem to characterize
both of the new algorithms theoretically. In particular, the clustering problem formulation
gives a minimal set of extra assumptions needed to prove the convergence of the ADMM
iterates to the unique global minimum. We also explicitly show how the computational and
storage complexity of our algorithms scales with the connectivity of the underlying graph.
Examination of the dual problem enables us to identify a fixed step size for AMA that
is associated with the Laplacian matrix of the underlying graph. Finally, our complexity
analysis enables us to rigorously quantify the efficiency of the two algorithms so the
two methods can be compared. (b) We provide new proofs of intuitive properties of the
solution path. These results are tied solely to the minimization of the objective function
objective function (1.1) and hold regardless of the algorithm used to find the minimum
point. (c) We provide guidance on how to choose the weights wij . Our suggested choices
diminish computational complexity and enhance solution quality. In particular, we show that
employing k-nearest neighbor weights allows the storage and computation requirements
for our AMA method to grow linearly in problem size.

1.2 RELATED WORK

The literature on clustering is immense; the reader can consult, for example, Hartigan
(1975), Kaufman and Rousseeuw (1990), Mirkin (1996), Gordon (1999), Wu and Wunsch
(2009) for a comprehensive review. The clustering function (1.1) can be viewed as a convex
relaxation of either k-means clustering (Lindsten, Ohlsson, and Ljung 2011) or hierarchical
agglomerative clustering (Hocking et al. 2011). Both of these classical clustering methods
(Sørensen 1948; Sneath 1957; Ward 1963) come in several varieties. The literature
on k-means clustering reports notable improvements in the computation (Elkan 2003)
and quality of solutions (Kaufman and Rousseeuw 1990; Bradley, Mangasarian, and
Street 1997; Arthur and Vassilvitskii 2007) delivered by the standard greedy algorithms.
Faster methods for agglomerative hierarchical clustering have been developed as well

D
ow

nl
oa

de
d 

by
 [

11
3.

10
7.

19
2.

13
3]

 a
t 0

3:
43

 1
5 

M
ar

ch
 2

01
6 



998 E. C. CHI AND K. LANGE

(Fraley 1998). Many statisticians view the hard cluster assignments of k-means as less desir-
able than the probabilistic assignments generated by mixture models (Titterington, Smith,
and Makov 1985; McLachlan 2000). Mixture models have the advantage of gracefully
assigning points to overlapping clusters. These models are amenable to an EM algorithm
and can be extended to infinite mixtures (Ferguson 1973; Neal 2000; Rasmussen 2000).

Alternative approaches to clustering involve identifying components in the associated
graph via its Laplacian matrix. Spectral clustering (Luxburg 2007) can be effective in cases
when the clusters are nonconvex and linearly inseparable. Although spectral clustering
is valuable, it does not conflict with convex relaxation. Indeed, Hocking et al. (2011)
demonstrated that convex clustering can be effectively merged with spectral clustering.
Although we agree with this point, the solution path revealed by convex clustering is
meritorious in its own right because it partially obviates the persistent need for determining
the number of clusters.

1.3 NOTATION AND ORGANIZATION

Throughout, scalars are denoted by lowercase letters (a), vectors by boldface lowercase
letters (u), and matrices by boldface capital letters (U). The jth column of a matrix U is
denoted by uj . At times, in our derivations, it will be easier to work with vectorized matrices.
We adopt the convention of denoting the vectorization of a matrix (U) by its lowercase
letter in boldface (u). Finally, we denote sets by uppercase letters (B).

The rest of the article is organized as follows. We first characterize the solution path
theoretically. Previous papers take intuitive properties of the path for granted. We then
review the ADMM and AMA algorithms and adapt them to solve the convex clustering
problem. Once the algorithms are specified, we discuss their convergence and computational
and storage complexity. Practical issues such as weight choice and refinements such as
accelerating the algorithms are discussed next. We then present some numerical examples
of clustering. The article concludes with a general discussion.

2. PROPERTIES OF THE SOLUTION PATH

The solution path U(γ ) enjoys several nice properties as a function of the regularization
parameter γ and the weight matrix W = (wij ). These properties expedite its numerical
computation. Proofs of the following two propositions can be found in the supplementary
materials.

Proposition 2.1. The solution path U(γ ) exists, is unique, and depends continuously on
γ . The path also depends continuously on the weight matrix W.

Existence and uniqueness of U sets the stage for a well-posed optimization problem.
Continuity of U suggests employing homotopy continuation. Indeed, empirically we find
great time savings in solving a sequence of problems over a grid of γ values when we use
the solution of a previous value of γ as a warm start or initial value for the next larger
γ value.
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It is plausible that the centroids eventually coalesce to a common point as γ becomes
sufficiently large. For the example shown in Figure 1, we intuitively expect for sufficiently
large γ that the columns of U satisfy u3 = u4 = x̄34 and u1 = u2 = u5 = x̄125, where x̄34 is
the mean of x3 and x4 and x̄125 is the mean of x1, x2, and x5. The next proposition rigorously
confirms our intuition.

Proposition 2.2. Suppose each point corresponds to a node in a graph with an edge
between nodes i and j whenever wij > 0. If this graph is connected, then Fγ (U) is minimized
by X̄ for γ sufficiently large, where each column of X̄ equals the average x̄ of the n vectors
xi .

We close this section by noting that in general the clustering paths are not guaranteed to
be agglomerative. In the special case of the �1 norm with uniform weights wij = 1, Hocking
et al. (2011) proved that the path is agglomerative. In the same article, they give an �2 norm
example where the centroids fuse and then unfuse as the regularization parameter increases.
This behavior, however, does not seem to occur very frequently in practice. Nonetheless,
in the algorithms we describe next, we allow for such fission events to ensure that the
computed solution path is truly the global minimizer of the convex criterion (1.1).

3. ALGORITHMS TO COMPUTE THE CLUSTERING PATH

Having characterized the solution path U(γ ), we now tackle the task of computing it. We
present two closely related optimization approaches: the alternating direction method of
multipliers (ADMM) (Glowinski and Marrocco 1975; Gabay and Mercier 1976; Boyd et al.
2011) and the alternating minimization algorithm (AMA) (Tseng 1991). Both approaches
employ variable splitting to handle the shrinkage penalties in the convex clustering criterion
(1.1).

Let us first recast the convex clustering problem as the equivalent constrained problem

minimize
1

2

n∑
i=1

‖xi − ui‖2
2 + γ

∑
l∈E

wl‖vl‖

subject to ul1 − ul2 − vl = 0. (3.1)

Here, we index a centroid pair by l = (l1, l2) with l1 < l2, define the set of edges over the
nonzero weights E = {l = (l1, l2) : wl > 0}, and introduce a new variable vl = ul1 − ul2 to
account for the difference between the two centroids. The purpose of variable splitting is
to simplify optimization with respect to the penalty terms.

Splitting methods such as ADMM and AMA have been successfully used to attack
similar problems in image restoration (Goldstein and Osher 2009). To clarify the similarities
and differences between ADMM and AMA, we briefly review how these two methods
iteratively solve the following constrained optimization problem:

minimize f (u) + g(v)

subject to Au + Bv = c, (3.2)
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1000 E. C. CHI AND K. LANGE

which includes the constrained minimization problem Equation (3.1) as a special case.
Recall that finding the minimizer to an equality constrained optimization problem is equiv-
alent to identifying the saddle point of the associated Lagrangian function. Both ADMM
and AMA invoke a related function called the augmented Lagrangian,

Lν(u, v,λ) = f (u) + g(v) + 〈λ, c − Au − Bv〉 + ν

2
‖c − Au − Bv‖2

2,

where the dual variable λ is a vector of Lagrange multipliers and ν is a nonnegative tuning
parameter. When ν = 0, the augmented Lagrangian coincides with the ordinary Lagrangian.

ADMM minimizes the augmented Lagrangian one block of variables at a time before
updating the dual variable λ. This yields the algorithm

um+1 = arg min
u

Lν(u, vm,λm)

vm+1 = arg min
v

Lν(um+1, v,λm)

λm+1 = λm + ν(c − Aum+1 − Bvm+1). (3.3)

AMA takes a slightly different tack and updates the first block u without augmentation,
assuming f (u) is strongly convex. This change is accomplished by setting the positive
tuning constant ν to be 0. Thus, we update the first block u as

um+1 = arg min
u

L0(u, vm,λm), (3.4)

and update v and λ as indicated in Equation (3.3). Later, we will see that this seemingly
innocuous change pays large dividends in the convex clustering problem. Although block
descent appears to complicate matters, it often markedly simplifies optimization in the end.
In the case of convex clustering, the updates are either simple linear transformations or
evaluations of proximal maps, which we discuss next.

3.1 PROXIMAL MAP

For σ > 0, the function

proxσ�(u) = arg min
v

[
σ�(v) + 1

2
‖u − v‖2

2

]

is a well-studied operation called the proximal map of the function �(v). The proximal
map exists and is unique whenever the function �(v) is convex and lower semicontinuous.
Norms satisfy these conditions, and for many norms of interest the proximal map can be
evaluated by either an explicit formula or an efficient algorithm. Table 1 lists some common
examples. The proximal maps for the �1 and �2 norms have explicit solutions and can be
computed in O(p) operations for a vector v ∈ Rp. The proximal map for the �∞ norm
requires projection onto the unit simplex and lacks an explicit solution. However, there are
good algorithms for projecting onto the unit simplex (Michelot 1986; Duchi et al. 2008). In
particular, Duchi et al.’s projection algorithm makes it possible to evaluate proxσ‖·‖∞ (v) in
O(p log p) operations.
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Table 1. Proximal maps for common norms; PC is the projection onto the closed, convex set C

Norm �(v) proxσ�(v) Comment

�1 ‖v‖1

[
1 − σ

|vl |
]
+

vl Elementwise soft-thresholding

�2 ‖v‖2

[
1 − σ

‖v‖2

]
+

v Blockwise soft-thresholding

�∞ ‖v‖∞ v − PσS (v) S is the unit simplex

3.2 ADMM UPDATES

The augmented Lagrangian for criterion Equation (3.1) is given by

Lν(U, V,�) = 1

2

n∑
i=1

‖xi − ui‖2
2 + γ

∑
l∈E

wl‖vl‖

+
∑
l∈E

〈λl , vl − ul1 + ul2〉 + ν

2

∑
l∈E

‖vl − ul1 + ul2‖2
2. (3.5)

To update U, we need to minimize the function

f (U) = 1

2

n∑
i=1

‖xi − ui‖2
2 + ν

2

∑
l∈E

‖ṽl − ul1 + ul2‖2
2,

where ṽl = vl + ν−1λl . The gradient of this function vanishes at U satisfying the linear
system

UM = X + ν
∑
l∈E

ṽl(el1 − el2 )t , (3.6)

where M = I + ν
∑

l∈E (el1 − el2 )(el1 − el2 )t . If the edge set E contains all possible edges,
then the update for U can be computed analytically as

ui = 1

1 + nν
yi + nν

1 + nν
x̄, (3.7)

where x̄ is the average column of X and

yi = xi +
∑
l1=i

[λl + νvl] −
∑
l2=i

[λl + νvl].

Detailed derivations of the equalities in Equations (3.6) and (3.7) can be found in the
supplementary materials.

Before deriving the updates for V, we remark that although a fully connected weights
graph allows one to write explicit updates for U, doing so comes at the cost of increasing the
number of variables vl and λl . Such choices are not immaterial, and we will discuss the trade-
offs later. To update V, we first observe that the augmented Lagrangian Lν(U, V,�) is sep-
arable in the vectors vl . A particular difference vector vl is determined by the proximal map

vl = arg min
vl

1

2

[
‖vl − (ul1 − ul2 − ν−1λl)‖2

2 + γwl

ν
‖vl‖

]

= proxσl‖·‖(ul1 − ul2 − ν−1λl), (3.8)
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Algorithm 1 ADMM

Initialize �0 and V0.

1: for m = 1, 2, 3, . . . do
2: for i = 1, . . . , n do
3: yi = xi + ∑

l1=i[λ
m−1
l + νvm−1

l ] − ∑
l2=i[λ

m−1
l + νvm−1

l ]
4: end for
5: Um = 1

1+nν
Y + nν

1+nν
X̄

6: for all l do
7: vm

l = proxσl‖·‖(um
l1

− um
l2

− ν−1λm−1
l )

8: λm
l = λm−1

l + ν(vm
l − um

l1
+ um

l2
)

9: end for
10: end for

where σl = γwl/ν. Finally, the Lagrange multipliers are updated by

λl = λl + ν(vl − ul1 + ul2 ).

Algorithm 1 summarizes the ADMM algorithm. To track the progress of ADMM, we
use standard methods given by Boyd et al. (2011) based on primal and dual residuals.
Details on the stopping rules that we employ are given in the supplementary materials.

3.3 AMA UPDATES

Since AMA shares its update rules for V and � with ADMM, consider updating U.
Recall that AMA updates U by minimizing the ordinary Lagrangian. In the ν = 0 case, we
have

Um+1 = arg min
U

1

2

n∑
i=1

‖xi − ui‖2
2 +

∑
l∈E

〈λm
l , vl − ul1 + ul2〉.

In contrast to ADMM, this minimization separates in each ui and gives an update that does
not depend on vl , namely

um+1
i = xi +

∑
l1=i

λm
l −

∑
l2=i

λm
l . (3.9)

Further scrutiny of the updates for V and � reveals that AMA does not even require
computing V. Applying standard results from convex calculus, it can be shown that � has
the following update:

λm+1
l = PCl

(
λm

l − νgm+1
l

)
, (3.10)

where gm
l = um

l1
− um

l2
, Cl = {λl : ‖λl‖† ≤ γωl}, and ‖ · ‖† is the dual norm of the norm

defining the fusion penalty. Algorithm 2 summarizes the AMA algorithm. Detailed deriva-
tion of this simplification is in the supplementary materials. At the termination of Algorithm
2, the centroids can be recovered from the dual variables using Equation (3.9).
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Algorithm 2 AMA

Initialize �0.

1: for m = 1, 2, 3, . . . do
2: for i = 1, . . . , n do
3: �m

i = ∑
l1=i λm−1

l − ∑
l2=i λ

m−1
l

4: end for
5: for all l do
6: gm

l = xl1 − xl2 + �m
l1

− �m
l2

7: λm
l = PCl

(λm−1
l − νgm

l )
8: end for
9: end for

Note that Algorithm 2 looks remarkably like a projected gradient algorithm. Indeed,
Tseng (1991) showed that AMA is actually performing proximal gradient ascent to maxi-
mize a dual problem. Since the dual of the convex clustering problem (3.1) is essentially
a constrained least squares problem, it is hardly surprising that it can be solved numeri-
cally by the classic projected gradient algorithm, a special case of the proximal gradient
algorithm. In addition to providing a simple interpretation of the AMA method, the dual
problem allows us to derive a rigorous stopping criterion for AMA based on the duality
gap, a bound on how much the primal objective evaluated at the current iterate exceeds its
optimal value. Due to space limitations, both the dual problem and duality gap computation
are covered in the supplementary materials. Before proceeding, however, let us emphasize
that AMA requires tracking of only as many dual variables λl as there are nonzero weights.
We will find later that sparse weights often produce better quality clusterings. Thus, when
relatively few weights are nonzero, the number of variables introduced by splitting does
not become prohibitive under AMA.

4. CONVERGENCE

Both ADMM and AMA converge under reasonable conditions. Convergence of ADMM
is guaranteed for any ν > 0. Convergence for AMA is guaranteed when ν is not too large.
In this section, we show how the specific structure of the convex clustering problem can
give stronger convergence results for ADMM and provide guidance on choosing ν in
AMA and improve AMA’s rate of convergence in practice. All proofs can be found in the
supplementary materials.

4.1 ADMM

Under minimal assumptions, it can be shown that the limit points of an ADMM iterate
sequence coincide with the stationary points of the objective function being minimized
(Boyd et al. 2011). Note, however, this does not guarantee that the iterates Um converge to
U∗. Since the convex clustering criterion Fγ (U) defined by Equation (1.1) is strictly convex
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and coercive, we have the stronger result that the ADMM iterate sequence converges to the
unique global minimizer U∗ of Fγ (U).

Proposition 4.1. The iterates Um in Algorithm 1 converge to the unique global minimizer
U∗ of the clustering criterion Fγ (U).

4.2 AMA

The convergence of Algorithm 2 hinges on the choice of ν, which, in turn, depends on
the connectivity of the associated graph.

Proposition 4.2. Let um+1
i = xi + ∑

l1=i λm
l − ∑

l2=i λ
m
l , where λm

l are the iterates in
Algorithm 2. Then, the sequence Um+1 converges to the unique global minimizer U∗ of
the clustering criterion Fγ (U), provided that ν < 2/ρ(L), where ρ(L) denotes the largest
eigenvalue of L, the Laplacian matrix of the associated graph.

In lieu of computing ρ(L) numerically, one can bound it by theoretical arguments. In
general, ρ(L) ≤ n (Anderson and Morley 1985), with equality when the graph is fully
connected and wij > 0 for all i < j . Choosing a fixed step size of ν < 2/n works in
practice when there are fewer than 1000 data points and the graph is dense. For a sparse
graph with bounded node degrees, the sharper bound

ρ(L) ≤ max{d(i) + d(j ) : (i, j ) ∈ E}
applies, where d(i) is the degree of the ith node (Anderson and Morley 1985). This bound
can be computed quickly in O(n + ε) operations, where ε denotes the number of edges in
E . Section 7.2 demonstrates the overwhelming speed advantage that AMA has on sparse
graphs.

5. COMPUTATIONAL COMPLEXITY

The computational complexity of an optimization algorithm includes the amount of
work per iteration, the number of iterations until convergence, and the overall memory
requirements. We discuss the first and third components. For the AMA and ADMM convex
clustering algorithms, the number of iterations to achieve a desired level of accuracy can
be derived from existing complexity results in the literature. Details can be found in the
supplementary materials.

5.1 AMA

Inspection of Algorithm 2 shows that computing all �i requires p(2ε − n) total addi-
tions and subtractions. Computing all vectors gl in Algorithm 2 takes O(εp) operations,
and taking the subsequent gradient step costs O(εp) operations. Computing the needed
projections costs O(εp) operations for the �1 and �2 norms and O(εp log p) operations
for the �∞ norm. Finally, computing the duality gap costs O(np + εp) operations. Details
on the duality gap computation appear in the supplementary materials. The assumption
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that n is O(ε) entails smaller costs. A single iteration with gap checking then costs just
O(εp) operations for the �1 and �2 norms and O(εp log p) operations for the �∞ norm.

Total storage is O(pε + np). In the worst case, ε is
(
n

2

)
. However, if we limit a node’s

connectivity to its k-nearest neighbors, then ε isO(kn). Thus, the computational complexity
of the problem in the worst case is quadratic in the number of points n and linear under the
restriction to k-nearest neighbors connectivity. Storage is quadratic in n in the worst case and
linear in n under the k-nearest neighbors restriction. Thus, limiting a point’s connectivity to
its k-nearest neighbors renders both the storage requirements and operation counts linear
in the problem size, namely O(knp).

5.2 ADMM

We have two cases to consider. First, consider the explicit updates outlined in Algorithm
1 when the edge set E is full. By nearly identical arguments as earlier, the complexity
of a single round of ADMM updates with primal and dual residual calculation requires
O(n2p) operations for the �1 and �2 norms and O(n2p log p) operations for the �∞ norm.
Thus, the ADMM algorithm based on the explicit update Equation (3.7) requires the same
computational effort as AMA in the worst case. In this setting, both ADMM and AMA also
have O(pn2) storage requirements.

The situation does not improve much when we consider the more frugal alternative
in which E contains only node pairings corresponding to nonzero weights. In this case,
the variables � and V have only as many columns as there are nonzero weights. Now,
the storage requirements are O(pε + np) like AMA, but the cost of updating U, the most
computationally demanding step, remains quadratic in n. Recall that we need to solve a
linear system of Equations (3.6)

UM = X +
∑
l∈E

ṽl(el1 − el2 )t ,

where M ∈ Rn×n. Since M is positive definite and does not change throughout the ADMM
iterations, the prudent course of action is to compute and cache its Cholesky factorization.
The factorization requires O(n3) operations to calculate but that cost can be amortized
across the repeated ADMM updates. With the Cholesky factorization in hand, we can
update each row of U by solving two sets of n-by-n triangular systems of equations,
which together requires O(n2) operations. Since U has p rows, the total amount of work
to update U is O(n2p). Therefore, the overall amount of work per ADMM iteration is
O(n2p + εp) operations for the �1 and �2 norms and O(n2p + εp log p) operations for the
�∞ norm. Thus, in stark contrast to AMA, both ADMM approaches grow quadratically,
either in storage requirements or computational costs, regardless of how we might limit the
size of the edge set E .

6. WEIGHTS, CLUSTER ASSIGNMENT, AND ACCELERATION

We now address some practical issues that arise in applying our algorithms.
Weights: The weight matrix W can dramatically affect the quality of the clustering path.

We set the weight between the ith and jth points equal to wij = ιk{i,j} exp(−φ‖xi − xj‖2
2),
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where the indicator function ιk{i,j} is 1 if j is among i’s k-nearest-neighbors or vice versa and
0 otherwise. The second factor is a Gaussian kernel that slows the coalescence of distant
points. The constant φ is nonnegative; the value φ = 0 corresponds to uniform weights. As
noted earlier, limiting positive weights to nearest neighbors improves both computational
efficiency and clustering quality. Although the two factors defining the weights act similarly,
their combination increases the sensitivity of the clustering path to the local density of the
data.

Cluster Assignment: We determine clustering assignments as a function of γ by reading
off which centroids fuse. For both ADMM and AMA, such assignments can be performed
in O(n) operations using the differences variable V. In the case of AMA, where we do
not store a running estimate of V, we compute V via the update (3.8) after the algorithm
terminates for a given γ . Once we determine V, we simply apply breadth-first search to
identify the connected components of the graph induced by V. This graph identifies a node
with every data point and places an edge between the lth pair of points if and only if vl = 0.
Each connected component corresponds to a cluster. Note that the graph described here
varies with γ , through the matrix V, and is unrelated to the graph discussed in the rest of
this article, which depends solely on the weights W and is invariant to γ .

Acceleration: Both AMA and ADMM admit acceleration at little additional computa-
tional cost (Goldstein, O’Donoghue, and Setzer 2012). In our timing comparisons, accel-
erated variants of AMA and ADMM are used. Details on our acceleration techniques can
be found in the supplementary materials.

7. NUMERICAL EXPERIMENTS

We now report numerical experiments on convex clustering for a synthetic and real
dataset. Similar experiments on two additional real datasets (iris and Senate) can be found
in the supplementary materials. In particular, we focus on how the choice of the weights
wij affects the quality of the clustering solution. Prior research on this question is limited.
Both Lindsten, Ohlsson, and Ljung (2011) and Hocking et al. (2011) suggested weights
derived from Gaussian kernels and k-nearest neighbors. Because Hocking et al. tried only
Gaussian kernels, in this section we follow up on their untested suggestion of combining
Gaussian kernels and k-nearest neighbors.

We also compare the run times of our splitting methods to the run times of the subgradient
algorithm employed by Hocking et al. for �2 paths. Our attention here focuses on solving
the �2 path since the rotational invariance of the �2 norm makes it a robust choice in
practice. Hocking et al. provided R and C++ code for their algorithms. Our algorithms are
implemented in R and C. To make a fair comparison, we run our algorithm until it reaches
a primal objective value that is less than or equal to the primal objective value obtained
by the subgradient algorithm. Specifically, we first run the Hocking et al. code to generate
a clusterpath and record the sequence of γ ’s generated by their code. We then run our
algorithms over the same sequence of γ ’s and stop once our primal objective value falls
below their value. We also retain the native stopping rule computations employed by our
splitting methods, namely the dual loss calculations for AMA and residual calculations for
ADMM. Since AMA already calculates the primal loss, this is not an additional burden.
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Figure 3. Halfmoons example: The first and second rows show results using k = 10 and 50 nearest neighbors,
respectively. The first and second columns show results using φ = 0 and 0.5, respectively.

Although convergence monitoring creates additional work for ADMM, the added primal
loss calculation at worst changes only the constant in the complexity bound. This follows
since computing the primal loss requires O(np + εp) total operations.

7.1 QUALITATIVE COMPARISONS

The following examples demonstrate how the character of the solution paths can vary
drastically with the choice of weights wij .

Two Half Moons: Consider the standard simulated data of two interlocking half moons
in R2 composed of 100 points each. Figure 3 shows four convex clustering paths computed
assuming two different numbers of nearest neighbors (10 and 50) and two different kernel
constants φ (0 and 0.5). The upper right panel makes it evident that limiting the number of
nearest neighbors (k = 10) and using nontrivial Gaussian kernel weights (φ = 0.5) produce
the best clustering path. Using too many neighbors and assuming uniform weights results
in little agglomerative clustering until late in the clustering path (lower left panel). The two
intermediate cases diverge in interesting ways. The hardest set of points to cluster are the
points in the upper half moon’s right tip and the lower half moon’s left tip. Limiting the
number of nearest neighbors and omitting the Gaussian kernel (upper left panel) correctly
agglomerates the easier points, but waffles on the harder points, agglomerating them only
at the very end when all points coalesce at the grand mean. Conversely, using too many
neighbors and the Gaussian kernel (lower right panel) leads to a clustering path that does
not hedge but incorrectly assigns the harder points.

Dentition of mammals: Next, we consider the problem of clustering mammals based on
their dentition (Hartigan 1975). Eight different kinds of teeth are tallied for each mammal:
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Figure 4. Clustering path under the �2 norm for the Mammal Data. Panel on the left (Set A) used wij = 1 for
all i 
= j . Panel on the right (Set B) used k = 5 nearest neighbors and φ = 0.5.

the number of top incisors, bottom incisors, top canines, bottom canines, top premolars,
bottom premolars, top molars, and bottom molars. We removed observations with teeth
distributions that were not unique, leaving us with 27 mammals. Figure 4 shows the
resulting clustering paths under two different choices of weights. On the left wij = 1 for
all i 
= j , and on the right we use 5-nearest neighbors and φ = 0.5. Weights sensitive to
the local density give superior results. Since there are eight variables, to visualize results
we project the data and the fitted clustering paths onto the first two principal components
of the data. The cluster path gives a different and perhaps more sensible solution than
a two-dimensional principal component analysis (PCA). For example, the brown bat is
considered more similar to the house bat and red bat, even though it is closer in the first
two PCA coordinates to the coyote and oppossum.

7.2 TIMING COMPARISONS

We now present results on two batches of experiments, with dense weights in the first
batch and sparse ones in the second. For the first set of experiments, we compared the run
times of the subgradient descent algorithm of Hocking et al. (2011), accelerated ADMM,
and accelerated AMA on 10 replicates of simulated data consisting of 100, 200, 300, 400,
and 500 points in R2 drawn from a multivariate standard normal. We limited our study
to at most 500 points because the subgradient algorithm took several hours on a single
realization of 500 points. Limiting the number of data points allowed us to use the simpler,
but less storage efficient, ADMM formulation given in Equation (3.7). For AMA, we fixed
the step size at ν = 1/n. For all tests, we assigned full-connectivity weights based on the
indicator ιk{i,j} ≡ 1 and tuning constant φ = −2. The parameter φ was chosen to ensure that
the smallest weight was bounded safely away from zero. The full-connectivity assumption
illustrates the superiority of AMA even under its least favorable circumstances. To trace
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Table 2. Timing comparison under the �2 norm: Dense weights. Mean run times are in seconds. Different methods
are listed on each row. Each column reports times for varying number of points

100 200 300 400 500

Subgradient 44.40 287.86 2361.84 3231.21 13895.50
AMA 16.09 71.67 295.23 542.45 1109.67
ADMM 57.82 449.68 1430.05 3432.77 6745.82

out the entire clusterpath, we ran the Hocking subgradient algorithm to completion and
invoked its default stopping criterion, namely a gradient with an �2 norm below 0.001. As
noted earlier, we stopped our ADMM and AMA algorithms once their centroid iterates
achieved a primal loss less than or equal to that achieved by the subgradient algorithm.

Table 2 shows the resulting mean times in seconds. Boxplots showing how the run time
scales with the number of data points n can be found in the supplementary materials. All
three algorithms scale quadratically in the number of points. This is expected for ADMM
and AMA because all weights wij are positive. Nonetheless, the three algorithms possess
different rate constants, with AMA possessing the slowest mean growth. The subgradient
and ADMM algorithms performed commensurately, although the ADMM algorithm was
almost twice as fast on average when n = 500. Again, to ensure fair comparisons with
the subgradient algorithm, we required ADMM to make extra primal loss computations.
This change tends to inflate its rate constant. In summary, we see that fast AMA leads
to affordable computation times, on the order of minutes for hundreds of data points, in
contrast to subgradient descent, which incurs run times on the order of hours for 400–500
data points.

In the second batch of experiments, the same setup is retained except for assignments
of weights and step length choice for AMA. We used φ = −2 again, but this time we
zeroed out all weights except those corresponding to the k = n

4 nearest neighbors of each
point. For AMA, we used step sizes based on the bound (4.1). Table 3 shows the resulting
mean run times in seconds. As before, more detailed boxplot comparisons can be found in
the supplementary materials. As attested by the shorter run times for all three algorithms,
incorporation of sparse weights appears to make the problems easier to solve. In this case,
ADMM was uniformly better on average than the subgradient method for all n. Even more
noteworthy is the pronounced speed advantage of AMA over the other two algorithms for
large n. When clustering 500 points, AMA requires on average a mere 7 sec compared to
5–7 min for the subgradient and ADMM algorithms.

Table 3. Timing comparison under the �2 norm: Sparse weights. Mean run times are in seconds. Different methods
are listed on each row. Each column reports times for varying number of points

100 200 300 400 500

Subgradient 6.52 37.42 161.68 437.32 386.45
AMA 1.50 2.94 4.46 6.02 7.44
ADMM 3.78 21.35 61.23 139.37 297.99
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July
打字机
一旦ADMM和AMA算法的质心迭代实现的原始损失小于或等于次梯度算法实现的原始损失，我们就停止了ADMM和AMA算法

July
打字机
AMA的平均增长速度最慢。次梯度算法和ADMM算法的性能相当，尽管当n=500时，ADMM算法的平均速度几乎是前者的两倍。

July
打字机
这三种算法的运行时间都较短，这证明了稀疏权重的加入似乎使问题更容易解决。在这种情况下，平均而言，ADMM比次梯度法对所有n。值得注意的是，与其他两种算法相比，AMA在处理大n时具有明显的速度优势
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8. CONCLUSION AND FUTURE WORK

In this article, we introduce two splitting algorithms for solving the convex clustering
problem. The splitting perspective encourages path following, one of the chief benefits of
convex clustering. The splitting perspective also permits centroid penalties to invoke an
arbitrary norm. The only requirement is that the proximal map for the norm be readily
computable. Equivalently, projection onto the unit ball of the dual norm should be straight-
forward. Because proximal maps and projection operators are generally well understood,
it is possible for us to quantify the computational complexity and convergence properties
of our algorithms.

It is noteworthy that ADMM did not fare as well as AMA. ADMM has become quite
popular in machine learning circles in recent years. Applying variable splitting and using
ADMM to iteratively solve the convex clustering problem seemed like an obvious and
natural initial strategy. Only later during our study did we implement the less favored AMA
algorithm. Considering how trivial the differences are between the generic block updates
for ADMM (3.3) and AMA (3.4), we were surprised by the performance gap between
them. In the convex clustering problem, however, there is a nontrivial difference between
minimizing the augmented and unaugmented Lagrangian in the first block update. This
task can be accomplished in less time and space by AMA.

Two features of the convex clustering problem make it an especially good candidate
for solution by AMA. First, the objective function is strongly convex and therefore has
a Lipschitz differentiable dual. Lipschitz differentiability is a standard condition ensuring
the convergence of proximal gradient algorithms. Second, a good step size can be readily
computed from the Laplacian matrix generated by the edge set E . Without this prior bound,
we would have to employ a more complicated line-search.

Our complexity analysis and simulations show that the accelerated AMA method appears
to be the algorithm of choice. Nonetheless, given that alternative variants of ADMM may
close the performance gap (Deng and Yin 2012; Goldfarb, Ma, and Scheinberg 2012), we
are reluctant to dismiss ADMM too quickly. Both algorithms deserve further investigation.
For instance, in both ADMM and AMA, updates of � and V could be parallelized. Hocking
et al. also employed an active set approach to reduce computations as the centroids coalesce.
A similar strategy could be adopted in our framework, but it incurs additional overhead
as checks for fission events have to be introduced. An interesting and practical question
brought up by Hocking et al. remains open, namely under what conditions or weights are
fusion events guaranteed to be permanent as γ increases? In all our experiments, we did
not observe any fission events. Identifying those conditions would eliminate the need to
check for fission in such cases and expedite computation.

For AMA, the storage demands and computational complexity of convex clustering de-
pend quadratically on the number of points in the worst case. Limiting a point’s connections
to its k-nearest neighbors, for example, ensures that the number of edges in the graph is
linear in the number of nodes in the graph. Eliminating long-range dependencies is often
desirable anyway. Choosing sparse weights can improve both cluster quality and computa-
tional efficiency. Moreover, finding the exact k-nearest neighbors is likely not essential, and
we conjecture that the quality of solutions would not suffer greatly if approximate nearest
neighbors are used and algorithms for fast computation of approximately nearest neighbors
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July
高亮文本

July
打字机
引入两种分裂算法解决凸聚类问题范数任选，但是近端映射要易于计算这样才可以量化算法复杂度和收敛特性

July
打字机
在第一次块更新中最小化增广拉格朗日和未分段拉格朗日之间有一个重要的区别。AMA可以在更短的时间和空间内完成这项任务
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are leveraged (Slaney and Casey 2008). On very large problems, the best strategy might be
to exploit the continuity of solution paths in the weights. This suggests starting with even
sparser graphs than the desired one and generating a sequence of solutions to increasingly
dense problems. A solution with fewer edges can serve as a warm start for the next problem
with more edges.

The splitting perspective also invites extensions that impose structured sparsity on the
centroids. Witten and Tibshirani (2010) discussed how sparse centroids can improve the
quality of a solution, especially when only a relatively few features of data drive clustering.
Structured sparsity can be accomplished by adding a sparsity-inducing norm penalty to
the U updates. The update for the centroids for both AMA and ADMM then rely on
another proximal map of a gradient step. Introducing a sparsifying norm, however, raises
the additional complication of choosing the amount of penalization.

Except for a few hints about weights, our analysis leaves the topic of optimal clustering
untouched. Recently, von Luxburg (2010) suggested some principled approaches to assess-
ing the quality of a clustering assignment via data perturbation and resampling. These clues
are worthy of further investigation.

SUPPLEMENTARY MATERIALS

The supplementary materials include proofs for all propositions, details on the more
complicated derivations, the stopping criterions for both algorithms, a sketch of algo-
rithm acceleration, derivation of the dual problem, additional discussion on computa-
tional complexity, additional figures showing timing comparisons, and application of con-
vex clustering to two additional real datasets. (Supplement.pdf) [Code:] An R package,
cvxclustr, which implements the AMA and ADMM algorithms in this article, is available
on the CRAN website. The mammals dataset is included in it.
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