Classification with Valid and Adaptive Coverage

徐少东

中国人民大学统计学院

2021年12月1日

- 1 研究目的及背景
- 2 方法介绍
- 3 模拟实验

- 1 研究目的及背景 研究目标 文献回顾 创新点
- 2 方法介绍
- 3 模拟实验

- ① 研究目的及背景 研究目标 文献回顾 创新点
- 2 方法介绍
- 3 模拟实验

- 假设有 n 个样本 $\{(X_i, Y_i)\}_{i=1}^n$, 其中 $X_i \in \mathbb{R}^p$ 为样本的特征, $Y_i \in \mathcal{Y} = \{1, 2, ..., C\}$ 为样本的标签;
- 样本满足可交换假设,样本所服从的未知分布用 Pxy 表示;
- 在特定覆盖水平 $1-\alpha$ 下,构建新样本 (X_{n+1}, Y_{n+1}) 标签的 预测集合 $\hat{C}_{n,a} \subseteq \mathcal{Y}$,其中 X_{n+1} 已知而 Y_{n+1} 未知。
- 预测集合满足边际覆盖 (marginal coverage)

$$\mathbb{P}\left[Y_{n+1} \in \hat{\mathcal{C}}_{n,a}(X_{n+1})\right] \geq 1 - \alpha.$$

边际覆盖在实际应用中可以很好地实现,但边际覆盖并不能 推出条件覆盖:

$$\mathbb{P}\left[Y_{n+1} \in \hat{\mathcal{C}}_{n,a}(x) | X_{n+1} = x\right] \ge 1 - \alpha.$$

- 条件覆盖希望对于特定的 X 的观察值实现有效覆盖。
- 没有较强的模型假设,条件覆盖理论上无法实现(Barber et al., 2019)。

研究目标

- 假定每一个样本i对应一个病人,X;代表这个病人的相关协变量(年龄、家族病史等),Y;表示一个定量的结果(比如,服用某种药物后血压会降低多少);
- 当一个新的病人进来,他的相关变量为 X_{n+1} , 医生想预测 他的结果 Y_{n+1} ;
- 在边际覆盖意义下,医生的预测对于接下来所有可能到来的 病人的平均值,有95%的机会是正确的;

边际覆盖和条件覆盖的区别在哪里?

- 假如有95%以上的患者都是25岁以上,那么如果新来的患者是25岁以下的,医生在边际覆盖意义下作出的95%预测区间可能对这个患者来说,正确率是0%。
- 因此条件覆盖的定义更强,他要求不管进来一个什么样的样本,都得保证作出的预测对于这个样本来说,正确率不小于95%。

- ① 提出一种分类方法在边际覆盖下能够理论证明其有效性;
- ② 同时可以估计该方法的条件覆盖率;
- ③ 并且保证方法的准确性,体现在 Ĉ 尽可能的小。

- 1 研究目的及背景 研究目标 文献回顾 创新点
- 2 方法介绍
- 3 模拟实验

- 在边际覆盖下提出的有关分类的共形推断方法有很多 (Hechtlinger et al., 2018; Sadinle et al., 2019; Vovk et al., 2005)。
- 最初为 Vladimir Vovk 提出,主要学者为 Larry Wasserman、 Jing Lei 等。

- ① 研究目的及背景 研究目标 文献回顾 创新点
- 2 方法介绍
- 3 模拟实验

假设我们已知条件分布 $P_{Y|X}$ 来对 oracle 性质进行探究。

- 定义最优的预测集合 $\mathcal{C}_{\alpha}^{oracle}(X_{n+1})$;
- 对于任意的 $x \in \mathbb{R}^p$,令 $\pi_y(x) = \mathbb{P}[Y = y | X = x]$,即我们可以得到给定 X = x 下的任意一个标签的条件概率;
- 定义 $\pi_y(x)$ 的次序统计量 $\pi_{(1)}(x) \ge \pi_{(2)}(x) \ge \cdots \ge \pi_{(C)}(x)$ 。
- 对于任意 τ ∈ [0,1],定义广义条件分位函数:

$$L(x; \pi, \tau) = \min\{c \in \{1, ..., C\} : \pi_{(1)}(x) + \pi_{(2)}(x) + \dots + \pi_{(C)}(x) \ge \tau\}$$

预测集合为

$$C_{\alpha}^{oracle+}(x) = \{ \text{前} L(x; \pi, 1-\alpha) \land$$
最大的 $\pi_{y}(x)$ 对应的 y 的 indexes $\}$

即在 $1-\alpha$ 水平下给定X=x包含响应变量最少的集合。

举例来说,如果
$$\pi_1(x) = 0.3$$
, $\pi_2(x) = 0.6$ 以及 $\pi_3(x) = 0.1$,则 $L(x;0.9) = 2$,取最大的两个,得到 $C_{0.1}^{oracle}(x) = \{1,2\}$ 。而 $L(x;0.5) = 1$,即取最大的一个,得到 $C_{0.5}^{oracle}(x) = \{2\}$ 。

定义一个新的函数 S 来计算预测集合,加入一个新的残暑 $u \in [0,1]$ 。一般情况下,

$$S(x, u; \pi, \tau) = C_{1-\tau}^{oracle}(x)$$

但是当 $u \leq V(x; \pi, \tau)$ 时,

$$S(x, u; \pi, \tau) = C_{1-\tau}^{oracle}(x) /$$
最大的 $\pi_y(x)$ 对应的 y

其中

$$V(x;\pi,\tau) = \frac{1}{\pi_{(L(x;\pi,\tau))}(x)} \left[\sum_{c=1}^{L(x;\pi,\tau)} \pi_{(c)}(x) - \tau \right].$$

令 u 服从一个均匀分布, 可以得到一个更紧的随机预测集合:

$$C_{\alpha}^{oracle}(x) = \mathcal{S}(x, U; \pi, 1 - \alpha).$$

其中 $U \sim Uniform(0,1)$ 并且与其他变量独立。 这样得到的集合是条件覆盖水平在 $1-\alpha$ 下最小的随机预测集合。 创新点

Oracle 分类器

在上述例子中,
$$L(x.0.5)=1$$
,有 $(0.6-0.5)/0.6=1/6$ 的概率 $C_{0.5}^{oracle}(x)=\emptyset$,有 $5/6$ 的概率 $C_{0.5}^{oracle}(x)=\{2\}$ 。

- 这篇文章使用训练好的分类器来估计未知的条件分布 PYIX;
- 所提出的方法的主要优势在于可以与任何黑箱预测模型进行 搭配,比如神经网络等;
- 唯一的限制是分类器需要可交换的处理所有的样本;
- 许多现成的估计 π_y(x) 的方法我们可以直接拿来使用,借助基于 oracle 分析得到的算法,来获得预测集合,并保证覆盖率。

- 使用 $\hat{\pi}_y(x)$ 来替代 $\pi_y(x)$ 不能保证前面所推出的覆盖率能达到,因为这个估计可能不够准确;
- $p_{\tau} = 1 \alpha$ 不能保证条件覆盖率能达到 $-\alpha$;
- 但是我们可以在 hold-out 数据中计算覆盖率, 然后反过来调整 τ ;
- 然后选择能够让覆盖率达到 $1-\alpha$ 的最小的 τ 。

- 1 研究目的及背景
- 2 方法介绍

Generalized inverse quantile conformity scores

Adaptive classification with split-conformal calibration

Adaptive classification with cross-validation+ and jackknife+
calibration

Comparison with alternative conformal methods

3 模拟实验

- 1 研究目的及背景
- 2 方法介绍

Generalized inverse quantile conformity scores

Adaptive classification with split-conformal calibration Adaptive classification with cross-validation+ and jackknife+ calibration

Comparison with alternative conformal methods

3 模拟实验

基本思想

假设我们有一个分类器,并得到了估计 $\hat{\pi}_{v}(x)$ 。这里只假定 $\hat{\pi}_{v}(x)$ 是标准化的。

然后我们将 π 放入上文由 oracle 条件推出的预测集合计算方法中,与 oracle 情况下不同的是,阈值 τ 需要使用独立于训练集的 hold-out 数据精心调整。

基本思想

定义函数 E, 输入 $x,y,u,\hat{\pi}$, 这个函数输出使得 $S(x,u;\pi,\tau)$ 在 给定 X=x 下包含标签 y 的 τ 的最小值。

这就是我们所需的 generalized inverse quantile conformity score function:

$$E(x, y, u; \hat{\pi}) = \min\{\tau \in [0, 1] : y \in S(x, u; \pi, \tau)\}.$$

有了这个函数,我们就可以在 hold-out 样本 (X_i, Y_i) 上计算共形度得分,记作 $E_i = E(X_i, Y_i, U_i; \hat{\pi})$ 。在理想情况下,即 $\hat{\pi} = \pi$ 时,以 X 为条件, E_i 是均匀分布的。

基本思想

$$E(x, y, u; \hat{\pi}) = \min\{\tau \in [0, 1] : y \in S(x, u; \pi, \tau)\}.$$

可以将其视作一种特殊的 p 值。 这个特性使得本文得到的得分可在不同样本中有可比性。 之前所提出的共形度得分即使是在 oracle 情况下,往往在 X 取 值不同的时候有不同的分布。而本文方法是在 $\hat{\tau}$ 下即可实现。 使用 $\{E_i\}_{i\in\mathcal{I}_2}$ 的 1- 分位点就可以得到 τ 应该的取值,其中 \mathcal{I}_2 是用来调整 τ 的 hold-out 数据,这部分数据没有用于估计 π 。

- 1 研究目的及背景
- 2 方法介绍

Generalized inverse quantile conformity scores

Adaptive classification with split-conformal calibration

Adaptive classification with cross-validation+ and jackknife+ calibration

Comparison with alternative conformal methods

③ 模拟实验

算法

Algorithm 1: Adaptive classification with split-conformal calibration

- **Input:** data $\{(X_i, Y_i)\}_{i=1}^n$, X_{n+1} , black-box learning algorithm \mathcal{B} , level $\alpha \in (0, 1)$.
- 2 Randomly split the training data into 2 subsets, $\mathcal{I}_1, \mathcal{I}_2$.
- 3 Sample $U_i \sim \text{Uniform}(0,1)$ for each $i \in \{1,\ldots,n+1\}$, independently of everything else.
- 4 Train \mathcal{B} on all samples in \mathcal{I}_1 : $\hat{\pi} \leftarrow \mathcal{B}(\{(X_i, Y_i)\}_{i \in \mathcal{I}_1})$.
- 5 Compute $E_i = E(X_i, Y_i, U_i; \hat{\pi})$ for each $i \in \mathcal{I}_2$, with the function E defined in $\ref{1}$.
- 6 Compute $\hat{Q}_{1-\alpha}(\{E_i\}_{i\in\mathcal{I}_2})$ as the $\lceil (1-\alpha)(1+|\mathcal{I}_2|)\rceil$ th largest value in $\{E_i\}_{i\in\mathcal{I}_2}$.
- 7 Use the function S defined in (5) to construct the prediction set at X_{n+1} as:

$$\hat{\mathcal{C}}_{n,\alpha}^{\text{SC}}(X_{n+1}) = \mathcal{S}(X_{n+1}, U_{n+1}; \hat{\pi}, \hat{Q}_{1-\alpha}(\{E_i\}_{i \in \mathcal{I}_2})). \tag{8}$$

8 Output: A prediction set $\hat{C}_{n,\alpha}^{SC}(X_{n+1})$ for the unobserved label Y_{n+1} .

算法性质

如果样本 (X_i, Y_i) , 对于 $i \in \{1, ..., n+1\}$ 都是可交换的,并且分类器 \mathcal{B} 不受输入样本的顺序影响,算法 1 的输出满足边际覆盖:

$$\mathbb{P}\left[Y_{n+1} \in \mathcal{C}_{n,\alpha}^{SC}(X_{n+1})\right] \geq 1 - \alpha.$$

并且,如果得分 E; 是几乎处处唯一的,边际覆盖接近是紧的:

$$\mathbb{P}\left[Y_{n+1} \in \mathcal{C}_{n,\alpha}^{SC}(X_{n+1})\right] \le 1 - \alpha + \frac{1}{|\mathcal{I}_2| + 1}.$$

.

- 1 研究目的及背景
- 2 方法介绍

Generalized inverse quantile conformity scores

Adaptive classification with split-conformal calibration

Adaptive classification with cross-validation+ and jackknife+ calibration

Comparison with alternative conformal methods

3 模拟实验

Adaptive classification with cross-validation+ and jackknife+ calibration

算法

Algorithm 2: Adaptive classification with CV+ calibration

- **1 Input:** data $\{(X_i, Y_i)\}_{i=1}^n$, X_{n+1} , black-box \mathcal{B} , number of splits $K \leq n$, level $\alpha \in (0, 1)$.
- 2 Randomly split the training data into K disjoint subsets, $\mathcal{I}_1, \ldots, \mathcal{I}_K$, each of size n/K.
- 3 Sample $U_i \sim \text{Uniform}(0, \bar{1})$ for each $i \in \{1, \dots, n+1\}$, independently of everything else.
- 4 for $k \in \{1, ..., K\}$ do
- 5 | Train \mathcal{B} on all samples except those in \mathcal{I}_k : $\hat{\pi}^k \leftarrow \mathcal{B}(\{(X_i, Y_i)\}_{i \in \{1, ..., n\} \setminus \mathcal{I}_k})$.
- 6 end
- 7 Use the function E defined in (7) to construct the prediction set $\hat{C}_{n,\alpha}^{\text{CV+}}(X_{n+1})$ as:

$$\hat{\mathcal{C}}_{n,\alpha}^{\text{CV+}}(X_{n+1}) = \left\{ y \in \mathcal{Y} : \sum_{i=1}^{n} \mathbf{1} \left[E(X_i, Y_i, U_i; \hat{\pi}^{k(i)}) < E(X_{n+1}, y, U_{n+1}; \hat{\pi}^{k(i)}) \right] < (1-\alpha)(n+1) \right\},$$
(11)

where $k(i) \in \{1, \dots, K\}$ is the fold containing the *i*th sample.

8 Output: A prediction set $\hat{C}_{n,\alpha}^{\text{CV+}}(X_{n+1})$ for the unobserved label Y_{n+1} .

- 1 研究目的及背景
- 2 方法介绍

Generalized inverse quantile conformity scores

Adaptive classification with split-conformal calibration

Adaptive classification with cross-validation+ and jackknife+
calibration

Comparison with alternative conformal methods

3 模拟实验

homogeneous conformal classification

之前提出的方法构建的预测区间大部分基于一个简单的规则:

$$\hat{\mathcal{C}}(x;t) = \{ y \in \mathcal{Y} : \hat{f}(y|x) \ge t \},\$$

但由于所有的样本都使用同一个阈值 t, 所以条件覆盖率会低于 预定水平。 Comparison with alternative conformal methods

quantile regression

这种方法有两个缺陷:

- 1 首先,它涉及额外的数据拆分以避免过度拟合,这往往会降低模型的效果;
- ② 其次,它的理论渐近最优性比我们的弱,因为它需要两个黑箱的一致性而不是一个。

- 1 研究目的及背景
- 2 方法介绍
- 3 模拟实验

模拟设置

- 数据 $X \in \mathbb{R}^p$, 其中 p = 10;
- X₁ 是信号变量, X₁ 以 0.2 概率取 1, 以 0.8 的概率取-8;
- 其他变量为噪音变量,都独立地服从标准正态分布;
- 标签 $Y \in \{1,...,10\}$ 在给定 X = x 时的条件分布为一个 multinomial 分布,其中权重 $w_j(x)$ 定义为 $w_j(x) = z_j(x)/\sum_{j'=1}^p z_{j'}(x)$,其中 $z_j(x) = \exp(x^T\beta_j)$,每一个 $\beta_j \in \mathbb{R}^p$ 是从独立的标准正态分布中抽样得到。

模拟结果

