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Cluster Analysis

Cluster analysis aims to assign observations into a number of clusters such
that observations in the same group are similar to each other.
Traditional clustering methods:

@ K-means.

@ Hierarchical clustering.

@ Gaussian mixture models.

However, these methods suffer from instabilities due to their non-convex
optimization formulations.
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Convex Clustering

Convex Clustering [Lindsten et al., 2011, Hocking et al., 2011]:

min fznx A B+ Y [l - A,

nx
AER™P 2 i1<ip

where X € R"*?, A; is the i-th row of A and || - |, is the L,-norm of a vector
with g € {1,2,0}.

@ K-means clustering and hierarchical clustering consider Ly-norm in the
second term, which leads to a non-convex optimization problem.

@ Small v (e.g. y=0) makes each observation by itself is a cluster.

@ Large 7y (e.g. ¥ = =) makes all the row of A be identical.
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Convex Clustering

@ In recent years, much effort has been spent on developing algorithms
and theory for convex clustering
[Chi and Lange, 2015, Tan and Witten, 2015].

@ When the number of features becomes large, many of them may contain
no information. Thus the performance of these methods can be severely
deteriorated.

@ To overcome this problem, an algorithm that can simultaneously perform
cluster analysis and select informative variables is in demand.
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e Sparse Convex Clustering
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Sparse Convex Clustering

min *Z HX A ||2+Y Z Wzl,lz HAll "Z'Hq (1)

AERmP 2 i<t
where the weight w;, ;, > 0.
@ [Hocking et al., 2011] considered a pairwise affinity weight w;, ;, =

exp (=6 X, ~ X |[3).

@ [Chi and Lange, 2015] suggested w;, ;, = 1", exp (—¢ 1X;,. —X,~2H§)
where ll-'ﬁiz is 1 if observation i, is among i; 's m nearest neighbors or
vice verse, and 0 otherwise.
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Sparse Convex Clustering

Write the data matrix X in feature-level as column vector X = (xy,--- ,X,),

where x; = (le, e ,X,,j)T ,J=1,...,p and denote A in feature level as column
vector A = (ay,---,a,). Simple algebra implies that (1) can be reformulated as

.1
W5 Ll el tr DAl @)

where & = {l= (i,iy) : 1 <i) <ip <n}.

@ Without loss of generality, we assume the feature vectors are centered,
ie, Y X;=0foreachj=1,...,p.

@ When 4; are identical, when the corresponding feature j is not
informative for clustering, i.e., ||4j|3 = 0.
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Sparse Convex Clustering

Sparse convex clustering solves
N 2 z
amin, 5 Ll tn Bl —Awl, < Dolal, @)
where tuning parameter y; controls the cluster size and tuning parameter y»

controls the number of informative features.

@ In the group-lasso penalty, the weight u; plays an important role to
adaptively penalize the features.
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Algorithm

Two optimization approaches similar to [Chi and Lange, 2015].
@ Sparse alternating direction method of multipliers (S-ADMM).

@ Sparse alternating minimization algorithm (S-AMA).
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Equivalent Form

This is equivalent to minimize the augmented Lagrangian function,

Ly(A,V,A) = z||x, a,nzwlzwzuvzn szqua/Hz

+ X (=i ALY+ 3 Z!Iw Aiy-+As[;
le&

where v is a small constant, V.= (vi,...,vj¢),and A = (Ai,..., 4z)) .
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S-ADMM

S-ADMM solves
AT = arg;ninLv (A, V" A™),
vl — arg\r/ninLv (Am+1,V,A'") ,
ATl _am oy (v;"“ — Ay +A;’;.“) led.

Step 1 : Update A Denote v; =v; + %l,. Updating A is equivalent to
minimizing

1 P 5 v " 5 P
fA) =3 Z HXJ'_aJ'H2+ B Z HVZ—Ail- +Ai2-“2+722”JHaJ'H2 (4)
2/=1 216(9 j=1

This optimization problem is challenging because the objective function
involves both rows and columns of the matrix A.
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Let I, be an n x n identity matrix, 1, € R” be a vector with each component
being 1, and e; be a vector with each component being 0 but its i-th
component being 1. Define N~! = (1+nv)~1/2 [I, +n~' (V1 +nv - 1)1,1}] and
denote y; = N~! [xj/+ V¥ cq Vi (e, —e;,)] with vj; the j-th element of ¥;. Then,
minimizing (4) is equivalent to

1
ngni Hyj—NajHi—i-}/zujHaj’ ,, foreachj=1,....p

remark: Based on this property, we are able to solve the minimization of f(A)
by p separate sub-optimization problems.
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S-ADMM

Step 2 : Update V For any ¢ > 0 and norm Q(-), we define a proximal map,
1
proxsq () = argmin [GQ(V) + 3 |lu— V||§]

In S-ADMM, Q(-) is a g-norm || - ||, with g = 1,2, or e, and 6 = yw;/v.

Because vectors v; are separable, they can be solved via proximal maps, that
is
Niwy

[[vill,

1
v = argmini ||V17 (A,1 —Aj,. - v )Her
Vi

= pI'OXGl”,Hq (Ail' —AiZA — Vﬁlll)
Step 2 : Update A A, can be updated by A;=A,+ v (v, —A;,. +A;,.).
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S-ADMM

1 Initialize V® and A°. Form=1,2,...

2 Forj=1,...,p,do

~ J
Vil=vi AT Lie&

y]’.”fl =N! (Xj—I-VZT/Z?l (eil —ei2)>

le&

m __

1 2
ay' = argmin [~ Nay|| |+ 7225 ],
aj

a" =a}' —a'l,, where @ = 1] a}" /n
3 Forle &, do

V' = ProXg.|, (A?'f- — A= V_IMH)
4 Forle &,do

P=AlT v (VAT AT

5 Repeat Steps 2-4 until convergence.
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S-AMA

S-AMA aims to increase the computational efficiency of S-ADMM.

@ S-AMA solves A by treating v =0, i.e., A""! = argmin, Lo (A, V"™, A™).
When v =0, we have N =1, and y; = x;. According to Lemma 1,
updating A requires to solve p group-lasso problems:

1 .
r‘é*“i“"j—ajuiﬂ’zujﬂaj}z’JZ Loop )
J

By Karush-Kuhn-Tucker (KKT) conditions of the group lasso problem
[Yuan and Lin, 2006], the solution to (5) has a closed form as

~ You;
a=|(1—- Z;i
' ( HZJH2>+ '

where z; = X; + Yes Aji (€, —e;,) and (z); = max{0,z}.
@ S-AMA does not need to update V.
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S-AMA

1 Initialize A°. Form=1,2,...

2 Forj=1,...,p,do

Z'=x;+ Y A (e, —e)
le&

Youi
A'=|1—--"“"+— | zV
’ ( ||z’-"||2> !

a/' = a' —a}'l,, where a’ =17a " /n

3 Forle &, do
I'=Pq [1'1"7' —v (A *Az"'z’)]
where C; = {A'l ”A'IHT ’}’1W1}
4 Repeat Steps 2-3 until convergence.

remark: Pc,(-) denotes projection onto C;, and || - ||+ denotes the dual norm.
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e Theoretical Analysis
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Some Notations

@ Assume x = aj + &, where € € R is a vector of independent
sub-Gaussian noise terms with mean zero and variance o2, and

T
ag = (agl e ,agp) is a np-dimensional mean vector.

@ Assume that only the first p < p features are informative, i.e., ||ag||, # 0
for j < po and ||a;||, = 0 for j > po. The informative feature set is denoted
as A={1,...,po} and the noninformative feature set is
A°={po+1,...,p}. For simplicity, we consider the case with w; = 1.

@ Sparse convex clustering in (3) can be reformulated as the following
problem:

_ 1 3
a= argm1n§||X—a||% +nY, |Call, + 71 Y uwlfayll, (6)
acRw e& J=1

where C; =1, ® (e;, —e;,)" and hence Cja=A;, —A;, Define
T
C= (C?,...,C‘Tgl) and denote u = (uy,...,u,)" .
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Prediction error for g = 1

Let a be the estimate of (6) withq=1. If y, > 40

2

+o? |+

72 3?’1 llu
[a—aoll3 < ||C olly + rluly 7
2np n n?p

holds with probability at least 1 — c3, where

2
3= 7~ +exp {—min (c1 log(np),cz plog(np)) }+2exp <—
p ( " > (

for some positive constants ¢, and ¢, defined in Lemma S.1

()
%, then

1 log(np)] e

1
np

hp

2027 ||ull})
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Prediction error for g =2

“((2)
+, then

1 [log(n 1
1. g(p)]Jr

Leta be the estimate of (6) withg=2. If y, > 40

1=~ 2 3n
a— < —
g la—aoll; np

n n?p

rlulz = -
Cia e )
Y [ICaoll, + s + -

e&

holds with probability at least 1 — c3, where cs is defined in Theorem 1 .
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lfn > 46\/10g (p~ ( 5 >> /ms 71 [|Caolly / (2np) = o(1), 72 — 0 and

%lul|}/(np) — 0 as n,p — o, then P (|[aj||, = 0) — 1 for any j € A°, with the
solution a to (6) with eitherq=1 orq=2.

Remark: p|[ul|?/(np) — 0 generally implies that the adaptive weights cannot
be too large. For example, uniform weights satisfy this condition.
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e Practical Issues
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Selection of weights

@ Following [Chi and Lange, 2015], we choose weights by incorporating
the m-nearest-neighbors methods with Gaussian kernel. In specific, the
weight between the pair (i1,i;) is

2
Wiyip = Uy i €XP (_¢ X, '_Xiz'Hz) ’
where i, equals 1 if observation i, is among observation i;’s m nearest
neighbors. In application, we set m =5 and ¢ =0.5.

@ u; can be chosen as 1/||a})||2, where ||a;(-)||2 is the estimate of a; in (3) with
Y= 0.
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Selection of Tuning Parameters

@ v controls the number of estimated clusters.
@ 7, controls the number of selected informative features.

@ Use stability selection to tune both y; and v,:

e For any given y; and y, based on two sets of bootstrapped
samples, two clustering results can be produced by (3).

o Compute the stability measurement [Fang and Wang, 2012] to
measure the agreement between the two clustering result.

@ Repeat this procedure 50 times and then compute the averaged
stability selection method.

@ To speed up tunning process, stability path can be computed over of a
coarse grid of v, and a fine grid of 9.
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e Numerical Results
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@ Sample size n = 60 with the number of clusters either K =2 or 4.
@ The number of features either p = 150 or 500.
@ Foreachi=1,...,n, cluster label Z; is uniformly sampled from {1,...,K}.

@ The first 20 informative features are generated from MVN,(ux(Z;),I),
where ug(z;) is defined as:
o fK=2,1u,(Z)=ulxl(Z;=1)—pulyl(Z;=2).
o IFK=4,p,(Z)= (u1%,—u1%) 1(Z: = 1)+
(—utly,—u1]y) 1z = 2)+ (—p1 T, p1Ty) 1(Z = 3) +
(1o p1}y) " 1(Zi=4).
@ The rest p —20 noise features are generated from N(0,1).
Remark : u controls the distance between cluster centers. A large u indicates

that clusters are well-separated, whereas a small u indicates that clusters are
overlapped.
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@ n =100, K =2 and p = 40, where the first two features are informative,
and the rest 38 noisy features are generated from N(0,0.5).

@ The plot of the first two features for one example of two interlocking half
moons.
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Five Settings for Simulation

@ Spherical settings

Setting1: K =2,n=60,p = 150,u = 0.6.
Setting2: K =2,n=60,p =500,u =0.7.
Setting 3 : K =4,n=60,p = 150, 1 = 0.9.
Setting4 : K =4,n=60,p =500, = 1.2.

@ Non-spherical settings
e Setting5: K =2,n=100,p = 40.
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Evaluation Criteria

@ RAND index : RAND index ranges between 0 and 1, and a higher value
indicates better performance.

@ False Negative Ratio (FNR).
@ False Positive Ratio (FPR).

Due to the high computational burden for S-ADMM in high-dimensional
settings, S-ADMM is not evaluated for p = 500. Additionally, we run 200
repetitions for each setting.
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Results

RAND FNR FPR
Setting 1 k-means 0.95 0.06 0.00 0.00 1.00 0.00
ADMM 0.53 0.39 0.00 0.00 1.00 0.00
AMA 0.66 0.40 0.00 0.00 1.00 0.00

S-ADMM 0.82 0.24 0.04 0.05 0.25 0.16

S-AMA 0.96 0.06 0.03 0.07 0.30 0.21

Setting 2 k-means 0.95 0.11 0.00  0.00 1.00  0.00
ADMM 0.14 0.20 0.00 0.00 1.00 0.00

AMA 0.08 0.21 0.00 0.00 1.00 0.00

S-AMA 0.97 0.07 0.07 0.09 0.11 0.10

Setting 3 k-means 0.83 0.15 0.00 0.00 1.00 0.00
ADMM 056 022 0.00  0.00 1.00 0.00

AMA 0.47 0.21 0.00  0.00 1.00  0.00

S-ADMM 0.82 0.14 0.04 0.06 0.25 0.24

S-AMA 0.84 0.13 0.02 0.04 0.11 0.18

Setting 4 k-means 0.89 0.14  0.00 0.00 1.00 0.00
ADMM 0.31 0.23 0.00  0.00 1.00  0.00

AMA 0.31 020  0.00  0.00 1.00 0.00

S-AMA 094  0.09 0.01 0.02  0.01 0.03

Setting 5 k-means 0.51 0.07 0.00 0.00 1.00 0.00
ADMM 0.54  0.08 0.00  0.00 1.00 0.00

AMA 0.53 0.09 0.00  0.00 1.00 0.00

S-AMA 0.57  0.07 0.00  0.00 034 027

SPECC 052 0.08 0.00  0.00 1.00  0.00

@ Convex clustering does not perform well when feature dimension is high.

@ Sparse convex clustering selects informative features with great
clustering accuracy.
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Application : hand movement clustering

@ Dataset contains 15 classes with each class referring to a hand

movement type.
@ Each class contains 24 observations and each observation has 90
features.
& N " 1

o St ~1-

5 w, 4 . 5

g e Wash o tabel S

T B e, Mo

2 Y 2

2- ‘ 24

L 1 R i 2
Principal Component 1 Principal Component 1

Convex clustering is only able to distinguish clusters 4 and 5 and treat the
rest clusters as one class.
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Algorithm  # of clusters  # of features RAND index

k-means 2 90 0.06
AMA 3 90 0.31
S-AMA 3 13 0.45

@ Both convex clustering (AMA) and sparse convex clustering (S-AMA)
perform better than k-means, which indicates that the performance of
convex clustering or sparse convex clustering is less sensitive to the
assumption of spherical clustering centers.

@ By using only 13 informative features, our S-AMA is able to improve the
clustering accuracy of convex clustering (AMA) by 45%. This indicates
the importance of variable selection in high-dimensional clustering.
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Clustering path of S-AMA

05+

0.0+

Principal Component 2

As tuning parameter y; increases, the clustering path of S-AMA tends to
merge clusters 3, 7 and 12 into one big cluster, merge cluster 4 and 5 into
another big cluster, and identify cluster 11 as the third cluster.
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Results

True Labels Labels from Clustering
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e Summary

nhang Zhang (RUC) Sparse Convex Clustering 2021.11.10 32/35




Conclusion and Future Work

@ An extension of convex clustering, sparse convex clustering, is proposed
to simultaneously cluster observations and conduct feature selection.

@ The numerical results show that S-AMA is computationally faster and
delivers better performance than S-ADMM.

@ The numerical results show that the selection of tuning parameters in
sparse convex clustering is important and the tuning method based on
clustering stability performs well.

@ Future work:

e Extend convex bi-clustering [Chi et al., 2017] to sparse
bi-clustering.

e Use group Ly penalty [Zhang et al., 2021] to replace the group
lasso penalty applying on the feature level.
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Thank You

Any questions or comments?
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