Numerical results

Discussion 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robust and Computational Feasible Community Detection in the Presence of Arbitrary Outlier Nodes

Author: T. Tony Cai and Xiaodong Li Reporter: Jiaqi Zhang

Nov 3, 2021

Introduction	Methodology	Numerical results	Discussion

Outline

1 Introduction

2 Methodology

3 Numerical results

4 Discussion

・ 日 ・ ・ 通 ・ ・ 画 ・ ・ 日 ・ うへぐ

Introduction	Methodology	Numerical results	Discussion
•••••			

Overview

1 Introduction

2 Methodology

3 Numerical results

4 Discussion

Numerical results

Discussion 000

Network data

Protein-Interaction network

Political Blog network

LinkedIn network

Food flavor network

Social network

Professional Network

э

ヘロト ヘ回ト ヘヨト ヘヨト

Figure 1: Network data

A network G(V, E)

• vertex/node set
$$V = [n] = \{1, 2, \dots, n\};$$

- edge set $E \subseteq \{(u, v) : u, v \in V\};$
- adjacency matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$;

• node degree
$$d_i = \sum_{j=1}^n A_{ij}$$
;

undirected, and with no self-loops.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Figure 2: A simple example of a network and the corresponding adjacency matrix \mathbf{A} .

Numerical results

Discussion 000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Community structure in social network

Figure 3: A social network example with community structure.

Introduction	Methodology	Numerical results	Discussion
000000000	0000000000000		000
Stochastic block	k model		

Each of the nodes belongs and only belongs to one and only one of the r nonoverlapping groups.

- labeling function $\phi(j) \in 1, \ldots, r$;
- connectivity matrix $\mathbf{B} \in [0, 1]^{r \times r}$;
- $A_{ij} \sim Be\left(B_{\phi(i)\phi(j)}\right)$, independently.

A common assumption:

$$p^- - q^+ := \delta > 0,$$

where $p^- := \underset{1 \leq i \leq r}{\min} B_{ii}$, and $q^+ := \underset{1 \leq i < j \leq r}{\min} B_{ij}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Denote the minimum community size by

$$n_{\min} := \min_{1 \le l \le r} \left| \phi^{-1}(l) \right|.$$

The difficulty of the community detection problem is determined by the tuple $(n,r,q^+,p^-,n_{\min}).$

Numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An example of SBM

- ▶ n = 1000 nodes;
- the first 500 nodes belongs to the same the cluster and the remaining the other;

• connectivity matrix
$$\mathbf{B} = \begin{bmatrix} 0.17 & 0.11 \\ 0.11 & 0.17 \end{bmatrix}$$
;

 spectral clustering method applied to both the graph Laplacian and adjacency matrix.

Numerical results

Discussion 000

Figure 4: An example of SBM.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Numerical results

Some types of outliers

- Mixed membership;
- Hubs;

. . .

- Small clusters;
- Independent neutral nodes;

Add m = 30 outliers to the previous SBM example. Within the outliers, the connectivity is 0.7, and that between each outlier and inlier is from U^2 .

Numerical results

(日)

Discussion 000

Figure 5: Add outliers to the SBM example.

Introduction	Methodology	Numerical results	Discussion
	•••••••		

Overview

1 Introduction

2 Methodology

3 Numerical results

4 Discussion

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalized stochastic block model

- totally N = n + m nodes, including n inliers and m outliers;
- ▶ labeling function $\phi(i) \in \{1, ..., r\}$ if $i \in I$, the set of inliers; $\phi(i) = r + 1$ if $i \in O$, the set of outliers;
- the inliers follow a SBM while the connectivity between outliers and inliers and among outliers is arbitrary.

The adjacency matrix of a GSBM can be expressed as

$$\mathbf{A} = \mathbf{P} \begin{bmatrix} \mathbf{K} & \mathbf{Z} \\ \mathbf{Z}^\top & \mathbf{W} \end{bmatrix} \mathbf{P}^\top = \mathbf{P} \begin{bmatrix} \mathbf{K}_{11} & \cdots & \mathbf{K}_{1r} & \mathbf{Z}_1 \\ \vdots & \ddots & \vdots & \vdots \\ \mathbf{K}_{1r}^\top & \cdots & \mathbf{K}_{rr} & \mathbf{Z}_r \\ \mathbf{Z}_1^\top & \cdots & \mathbf{Z}_r^\top & \mathbf{W} \end{bmatrix} \mathbf{P}^\top$$

Numerical results

Discussion 000

Semidefinite programming (SDP) of SBM

We derive the convex optimization first from an ordinary SBM model.

- Define a symmetric matrix **X** with diagonal entries equal to 1. Let $X_{ij} = 0$, if $\phi(i) \neq \phi(j)$, while $X_{ij} = 1$, if $\phi(i) = \phi(j)$;
- Let $\mathbb{P}(A_{ij} = 1) = q$, if $X_{ij} = 0$; otherwise, let $\mathbb{P}(A_{ij} = 1) = p$.

Then we have

$$\log \mathbb{P}(A_{ij} = 1 | X_{ij}) = X_{ij} \log p + (1 - X_{ij}) \log q,$$

and

$$\log \mathbb{P}(A_{ij} = 0 | X_{ij}) = X_{ij} \log(1-p) + (1 - X_{ij}) \log(1-q),$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Introduction	Methodology	Numerical results	Discussion
000000000	000000000000		000

The log-likelihood function

$$\ell(\mathbf{A}|\mathbf{X}) = \sum_{1 \le i < j \le n} \left\{ A_{ij} \left[X_{ij} \log p + (1 - X_{ij}) \log q \right] + (1 - A_{ij}) \left[X_{ij} \log(1 - p) + (1 - X_{ij}) \log(1 - q) \right] \right\}$$

Maximization of the log-likelihood function is equivalent

$$\max_{\mathbf{X}} \langle \mathbf{X}, (1-\lambda)\mathbf{A} - \lambda(\mathbf{J}_N - \mathbf{I}_N - \mathbf{A}) \rangle,$$

the constraint of ${\bf X}$ is that it must have the following form:

$$\mathbf{X} = \mathbf{P} egin{bmatrix} \mathbf{J}_{l_1} & & \ & \ddots & \ & & \mathbf{J}_{l_r} \end{bmatrix} \mathbf{P}^ op$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Methodology	Numerical results	Discussion
	000000000000		

Relaxed form of the constraint:

- **X** is positive semidefinite;
- all its entries are between 0 and 1;
- ▶ it is of rank r, far from full-rank.

The relaxed maximum likelihood method becomes

$$\begin{split} \max_{\widetilde{\mathbf{X}}} \left\langle \widetilde{\mathbf{X}}, (1-\lambda)\mathbf{A} - \lambda(\mathbf{J}_N - \mathbf{I}_N - \mathbf{A}) \right\rangle \\ \text{subject to} \qquad \widetilde{\mathbf{X}} \succeq 0, \\ 0 \leq \widetilde{X}_{ij} \leq 1, \text{ for } 1 \leq i, j \leq N. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000000000	Methodology 000000000000	Numerical results	Discussion 000
SDD of CCDN	Λ		

We add an additional term in the objective function to penalized the trace

$$\begin{split} \min_{\widetilde{\mathbf{X}}} \langle \widetilde{\mathbf{X}}, \mathbf{E} \rangle \\ \text{subject to} \quad & \widetilde{\mathbf{X}} \succeq 0, \\ & 0 \leq \widetilde{X}_{ij} \leq 1, \text{ for } 1 \leq i, j \leq N. \end{split}$$
where $\mathbf{E} := \alpha \mathbf{I}_N - (1 - \lambda) \mathbf{A} + \lambda (\mathbf{J}_N - \mathbf{I}_N - \mathbf{A})$

$$\end{split}$$
(2.3)

Introduction	Methodology	Numerical results	Discussion
000000000	000000000000	00000000	000

Recall that X is a symmetric matrix where $X_{ij} = 0$, if $\phi(i) \neq \phi(j)$, while $X_{ij} = 1$, if $\phi(i) = \phi(j)$, which reveals the clustering structure of the nodes.

- The relaxed form X cannot directly show us the clustering structure;
- the second step is conducting k-means clustering algorithm to solve for assigning function $\hat{\phi}$.

Introduction	Methodology	Numerical results	Discussion
000000000	0000000000000		000
Computation			

The optimization problem (2.3) can be rewritten as

$$\begin{split} \min_{\mathbf{Y},\mathbf{Z}} & \iota(\mathbf{Y}\succeq\mathbf{0}) + \iota\left(\mathbf{0}\leq\mathbf{Z}\leq\mathbf{J}_N\right) + \langle\mathbf{Y},\mathbf{E}\rangle, \\ \text{subject to} & \mathbf{Y}=\mathbf{Z}. \end{split}$$

Note that the objective function is convex. Define the scaled augmented Lagrangian of this optimization problem as

$$L_{\rho}(\mathbf{Y}, \mathbf{Z}; \mathbf{\Lambda}) := \iota(\mathbf{Y} \succeq \mathbf{0}) + \iota(\mathbf{0} \le \mathbf{Z} \le \mathbf{J}_N) + \langle \mathbf{Y}, \mathbf{E} \rangle + \frac{\rho}{2} \|\mathbf{Y} - \mathbf{Z} + \mathbf{\Lambda}\|_F^2$$

To minimize $L_{\rho}(\mathbf{Y}, \mathbf{Z}; \mathbf{\Lambda})$, the ADMM algorithm tells us to alternately update \mathbf{Y} , \mathbf{Z} , and $\mathbf{\Lambda}$, with the other two fixed.

Introduction	Methodology	Numerical results	Discussion
000000000	oooooooooooo		000

Minimizing $L_{\rho}(\mathbf{Y}, \mathbf{Z}; \mathbf{\Lambda})$ with respect to \mathbf{Y} is equivalent to minimizing

Update \mathbf{Y}

$$\iota(\mathbf{Y} \succeq \mathbf{0}) + \frac{\rho}{2} \|\mathbf{Y} - \mathbf{Z} + \mathbf{\Lambda} + \frac{\mathbf{E}}{\rho}\|_F^2.$$

For any symmetric matrix ${\bf X}$ with eigendecomppositon ${\bf X}={\bf V}{\boldsymbol{\Sigma}}{\bf V}^\top$, define ${\bf X}_+:={\bf V}{\boldsymbol{\Sigma}}_+{\bf V}^\top$. Then the solution to ${\bf Y}$ is

$$\underset{\mathbf{Y}}{\operatorname{argmin}} L_{\rho}(\mathbf{Y}, \mathbf{Z}; \mathbf{\Lambda}) = \left(\mathbf{Z} - \mathbf{\Lambda} - \frac{\mathbf{E}}{\rho}\right)_{+}$$

.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Methodology	Numerical results	Discussion
000000000	oooooooooooooo		000

Minimizing $L_{\rho}(\mathbf{Y}, \mathbf{Z}; \mathbf{\Lambda})$ with respect to \mathbf{Z} is equivalent to minimizing

$$\iota \left(\mathbf{0} \leq \mathbf{Z} \leq \mathbf{J}_N\right) + \frac{\rho}{2} \|\mathbf{Y} - \mathbf{Z} + \mathbf{\Lambda}\|_F^2.$$

There still exist a closed-form solution

Update \mathbf{Z}

$$\underset{\mathbf{Z}}{\operatorname{argmin}} L_{\rho}(\mathbf{Y},\mathbf{Z};\boldsymbol{\Lambda}) := \min\left(\max(\mathbf{Y}+\boldsymbol{\Lambda},\mathbf{0}),\mathbf{J}_{N}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Numerical results

Discussion 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Update Λ and the remainings about computation

According to the ADMM algorithm, the dual variable Λ is updated to $\Lambda+(Y-Z).$

- ▶ The parameters are initialized as $\mathbf{Z}_0 = \mathbf{0}$ and $\mathbf{\Lambda}_0 = \mathbf{0}$;
- The 'step size' is set to $\rho = 1$;
- The maximum number of iterations is set to 100.

 Numerical results

Theoretical results

Theorem 3.1.

Let A be the adjacency matrix of the semi-random graph under the GSBM. Let $\widehat{\mathbf{X}}$ be a solution to the semidefinite program (2.3). Suppose that $p^- \geq C \frac{\log n}{n_{\min}}$, $\alpha \geq 3m$ and

$$\delta > C\left(\sqrt{\frac{p^{-}\log n}{n_{\min}}} + \frac{\alpha}{n_{\min}} + \frac{\sqrt{nq^{+}}}{n_{\min}} + \frac{m\sqrt{r}}{n_{\min}} + \frac{nmp^{-}}{(\alpha - 2m)n_{\min}}\right)$$

for some sufficiently large numerical constant C, and the tuning parameter λ satisfies

$$q^+ + \frac{4}{\delta} < \lambda < p^- - \frac{4}{\delta}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Numerical results

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem 3.1. (continued)

Then with probability at least $1 - \frac{1}{n} - \frac{n^2}{2r} - \frac{cr}{n_{\min}^4}$ for some constant c, $\widehat{\mathbf{X}}$ must be of the form

$$\widehat{\mathbf{X}} = \mathbf{P} \begin{bmatrix} \mathbf{J}_{l_1} & & \widehat{\mathbf{Z}}_1 \\ & \ddots & & \vdots \\ & & \mathbf{J}_{l_r} & \widehat{\mathbf{Z}}_r \\ \widehat{\mathbf{Z}}_1^\top & \cdots & \widehat{\mathbf{Z}}_r^\top & \widehat{\mathbf{W}} \end{bmatrix} \mathbf{P}^\top$$

Numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 3.2.

Suppose the assumption in Theorem 3.1 hold as well as $m < \frac{2r+4}{r_{\min}}$. Then, with high probability, the misclassification rate among the inlier nodes is no more than $\frac{(2r+3)m}{n}$.

Introduction	Methodology	Numerical results	Discussion
000000000	0000000000000	•00000000	000
Overview			

1 Introduction

2 Methodology

3 Numerical results

4 Discussion

Introduction	Methodology	Numerical results	Discussion
000000000	000000000000	0●0000000	000

▶ *n* = 1000 nodes;

Simulations

the first 500 nodes belongs to the same the cluster and the remaining the other;

• connectivity matrix
$$\mathbf{B} = \begin{bmatrix} 0.17 & 0.11 \\ 0.11 & 0.17 \end{bmatrix}$$
;

 spectral clustering method applied to both the graph Laplacian and adjacency matrix.

Add m = 30 outliers to the previous SBM example. Within the outliers, the connectivity is 0.7, and that between each outlier and inlier is from U^2 .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Methodology	Numerical results	Discussion
000000000	ooooooooooooo	00000000	000

The nodes with degrees above the 80th percentile or below the 20th percentile are eliminated from the graph, and λ is chosen as the mean density of the subgraph of the remaining nodes.

- 10 independent graphical date sets, the average misclassification rate is 0.0063;
- while those of spectral clustering on the graph Laplacians and adjacency matrices are 0.4792 and 0.5000;
- applying spectral clustering with k = 3 gets misclassification rates 0.3083 and 0.4730.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical results

Discussion 000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction

Numerical results

(日)

э

Discussion 000

Figure 6: Results of the proposed method in one replicate.

Numerical results

(日) (四) (日) (日) (日)

Discussion 000

Sensitivity to the choice of λ

Figure 7: Sensitivity to λ .

Introduction 000000000 Methodology 00000000000000000 Numerical results

Discussion 000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sensitivity to within connectivity p

Figure 8: Sensitivity to *p*.

Introduction	Methodology	Numerical results	Discussion
000000000	0000000000000	0000000●0	000
Real data analys	sis		

Political blogs network data:

- political blogs connected with hyperlinks;
- 1222 nodes and 16,714 edges;
- manually labeled in previous study.

Use a modified version of (2.3) by letting

$$\mathbf{E} := -\left(\mathbf{I}_N - \mathbf{D}\right)^{1/2} \mathbf{A} \left(\mathbf{I}_N - \mathbf{D}\right)^{1/2} + \mathbf{D}^{1/2} \left(\mathbf{J}_N - \mathbf{I}_N - \mathbf{A}\right) \mathbf{D}^{1/2}.$$

The misclassification rate is 63/1222. While ordinary spectral clustering fails on this dataset and the misclassification rate of different modified versions of spectral clustering is at least 0.2.

Introduction 0000000000

Numerical results

Discussion 000

Sensitivity to within connectivity p

= 900

Introduction	Methodology	Numerical results	Discussion
000000000	0000000000000		•00
Overview			

1 Introduction

2 Methodology

3 Numerical results

Introduction	Methodology	Numerical results	Discussion
000000000	000000000000	000000000	○●○

Discussion

- The GSBM for robust community detection is proposed with strong theoretical guarantees in the performance in finding the clustering structure;
- ▶ the assumption $\delta = p^- q^+$ is too strong for some real-world applications;

- degree-corrected SBM;
- choice of α .

Introduction 0000000000

Numerical results

Discussion 000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!