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Network data

Figure 1: Network data
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A network G(V,E)

I vertex/node set V = [n] = {1, 2, . . . , n};
I edge set E ⊆ {(u, v) : u, v ∈ V };
I adjacency matrix A ∈ Rn×n;

I node degree di =
∑n

j=1Aij ;

I undirected, and with no self-loops.

Figure 2: A simple example of a network and the corresponding adjacency
matrix A.
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Community structure in social network

Figure 3: A social network example with community structure.
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Stochastic block model

Each of the nodes belongs and only belongs to one and only one of
the r nonoverlapping groups.

I labeling function φ(j) ∈ 1, . . . , r;

I connectivity matrix B ∈ [0, 1]r×r;

I Aij ∼ Be
(
Bφ(i)φ(j)

)
, independently.

A common assumption:

p− − q+ := δ > 0,

where p− := min
1≤i≤r

Bii, and q+ := min
1≤i<j≤r

Bij .
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Denote the minimum community size by

nmin := min
1≤l≤r

∣∣φ−1(l)∣∣ .
The difficulty of the community detection problem is determined
by the tuple (n, r, q+, p−, nmin).
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An example of SBM

I n = 1000 nodes;

I the first 500 nodes belongs to the same the cluster and the
remaining the other;

I connectivity matrix B =

[
0.17 0.11
0.11 0.17

]
;

I spectral clustering method applied to both the graph
Laplacian and adjacency matrix.
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Figure 4: An example of SBM.
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Some types of outliers

I Mixed membership;

I Hubs;

I Small clusters;

I Independent neutral nodes;

I ...

Add m = 30 outliers to the previous SBM example. Within the
outliers, the connectivity is 0.7, and that between each outlier and
inlier is from U2.
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Figure 5: Add outliers to the SBM example.
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Generalized stochastic block model

I totally N = n+m nodes, including n inliers and m outliers;

I labeling function φ(i) ∈ {1, . . . , r} if i ∈ I, the set of inliers;
φ(i) = r + 1 if i ∈ O, the set of outliers;

I the inliers follow a SBM while the connectivity between
outliers and inliers and among outliers is arbitrary.

The adjacency matrix of a GSBM can be expressed as

A = P

[
K Z
Z> W

]
P> = P


K11 · · · K1r Z1

...
. . .

...
...

K>1r · · · Krr Zr
Z>1 · · · Z>r W

P>
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Semidefinite programming (SDP) of SBM

We derive the convex optimization first from an ordinary SBM
model.

I Define a symmetric matrix X with diagonal entries equal to 1.
Let Xij = 0, if φ(i) 6= φ(j), while Xij = 1, if φ(i) = φ(j);

I Let P(Aij = 1) = q, if Xij = 0; otherwise, let P(Aij = 1) = p.

Then we have

logP(Aij = 1|Xij) = Xij log p+ (1−Xij) log q,

and

logP(Aij = 0|Xij) = Xij log(1− p) + (1−Xij) log(1− q),
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The log-likelihood function

`(A|X) =
∑

1≤i<j≤n

{
Aij

[
Xij log p+ (1−Xij) log q

]
+ (1−Aij)

[
Xij log(1− p) + (1−Xij) log(1− q)

]}
Maximization of the log-likelihood function is equivalent

max
X

〈
X, (1− λ)A− λ(JN − IN −A)

〉
,

the constraint of X is that it must have the following form:

X = P

Jl1
. . .

Jlr

P>
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Relaxed form of the constraint:

I X is positive semidefinite;

I all its entries are between 0 and 1;

I it is of rank r, far from full-rank.

The relaxed maximum likelihood method becomes

max
X̃

〈
X̃, (1− λ)A− λ(JN − IN −A)

〉
subject to X̃ � 0,

0 ≤ X̃ij ≤ 1, for 1 ≤ i, j ≤ N.
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SDP of GSBM

We add an additional term in the objective function to penalized
the trace

min
X̃

〈
X̃,E

〉
subject to X̃ � 0,

0 ≤ X̃ij ≤ 1, for 1 ≤ i, j ≤ N.

(2.3)

where E := αIN − (1− λ)A + λ(JN − IN −A)
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Recall that X is a symmetric matrix where Xij = 0, if φ(i) 6= φ(j),
while Xij = 1, if φ(i) = φ(j), which reveals the clustering
structure of the nodes.

I The relaxed form X̃ cannot directly show us the clustering
structure;

I the second step is conducting k-means clustering algorithm to
solve for assigning function φ̂.
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Computation

The optimization problem (2.3) can be rewritten as

min
Y,Z

ι(Y � 0) + ι (0 ≤ Z ≤ JN ) + 〈Y,E〉,

subject to Y = Z.

Note that the objective function is convex. Define the scaled
augmented Lagrangian of this optimization problem as

Lρ(Y,Z;Λ) := ι(Y � 0)+ι (0 ≤ Z ≤ JN )+〈Y,E〉+ρ
2
‖Y−Z+Λ‖2F

To minimize Lρ(Y,Z;Λ), the ADMM algorithm tells us to
alternately update Y, Z, and Λ, with the other two fixed.
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Update Y

Minimizing Lρ(Y,Z;Λ) with respect to Y is equivalent to
minimizing

ι(Y � 0) +
ρ

2
‖Y − Z + Λ +

E

ρ
‖2F .

For any symmetric matrix X with eigendecomppositon
X = VΣV>, define X+ := VΣ+V>. Then the solution to Y is

argmin
Y

Lρ(Y,Z;Λ) =

(
Z−Λ− E

ρ

)
+

.
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Update Z

Minimizing Lρ(Y,Z;Λ) with respect to Z is equivalent to
minimizing

ι (0 ≤ Z ≤ JN ) +
ρ

2
‖Y − Z + Λ‖2F .

There still exist a closed-form solution

argmin
Z

Lρ(Y,Z;Λ) := min (max(Y + Λ,0),JN )
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Update Λ and the remainings about computation

According to the ADMM algorithm, the dual variable Λ is updated
to Λ + (Y − Z).

I The parameters are initialized as Z0 = 0 and Λ0 = 0;

I The ‘step size‘ is set to ρ = 1;

I The maximum number of iterations is set to 100.
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Theoretical results

Theorem 3.1.

Let A be the adjacency matrix of the semi-random graph under
the GSBM. Let X̂ be a solution to the semidefinite program (2.3).
Suppose that p− ≥ C logn

nmin
, α ≥ 3m and

δ > C

√p− log n

nmin
+

α

nmin
+

√
nq+

nmin
+
m
√
r

nmin
+

nmp−

(α− 2m)nmin


for some sufficiently large numerical constant C, and the tuning
parameter λ satisfies

q+ +
4

δ
< λ < p− − 4

δ
.
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Theorem 3.1. (continued)

Then with probability at least 1− 1
n −

n2

2r −
cr
n4
min

for some constant

c, X̂ must be of the form

X̂ = P


Jl1 Ẑ1

. . .
...

Jlr Ẑr
Ẑ>1 · · · Ẑ>r Ŵ

P>
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Theorem 3.2.

Suppose the assumption in Theorem 3.1 hold as well as m < 2r+4
rmin

.
Then, with high probability, the misclassification rate among the
inlier nodes is no more than (2r+3)m

n .
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Simulations

I n = 1000 nodes;

I the first 500 nodes belongs to the same the cluster and the
remaining the other;

I connectivity matrix B =

[
0.17 0.11
0.11 0.17

]
;

I spectral clustering method applied to both the graph
Laplacian and adjacency matrix.

Add m = 30 outliers to the previous SBM example. Within
the outliers, the connectivity is 0.7, and that between each
outlier and inlier is from U2.
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The nodes with degrees above the 80th percentile or below the
20th percentile are eliminated from the graph, and λ is chosen as
the mean density of the subgraph of the remaining nodes.

I 10 independent graphical date sets, the average
misclassification rate is 0.0063;

I while those of spectral clustering on the graph Laplacians and
adjacency matrices are 0.4792 and 0.5000;

I applying spectral clustering with k = 3 gets misclassification
rates 0.3083 and 0.4730.
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Figure 6: Results of the proposed method in one replicate.
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Sensitivity to the choice of λ

Figure 7: Sensitivity to λ.



Introduction Methodology Numerical results Discussion

Sensitivity to within connectivity p

Figure 8: Sensitivity to p.
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Real data analysis

Political blogs network data:

I political blogs connected with hyperlinks;

I 1222 nodes and 16,714 edges;

I manually labeled in previous study.

Use a modified version of (2.3) by letting

E := − (IN −D)1/2 A (IN −D)1/2 + D1/2 (JN − IN −A)D1/2.

The misclassification rate is 63/1222. While ordinary spectral
clustering fails on this dataset and the misclassification rate of
different modified versions of spectral clustering is at least 0.2.
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Sensitivity to within connectivity p

Figure 9: Results of real data analysis.
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Discussion

I The GSBM for robust community detection is proposed with
strong theoretical guarantees in the performance in finding the
clustering structure;

I the assumption δ = p− − q+ is too strong for some real-world
applications;

I degree-corrected SBM;

I choice of α.
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Thank you!
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