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Concerned problem

Concerned with the following penalized estimation problem:

β̂ = arg min
β


m∑
i=1

li (βi) +
∑

(i,j)∈H

λijgij (βi − βj)


where β̂ =

(
β̂1, β̂2, · · · , β̂m

)
.

li (βi): loss function associated with data from data center i.

βi: p-dimensional vector.

H: undirected graph.

λij ≥ 0: tuning parameter.
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Concerned problem

Concerned with the following penalized estimation problem:

β̂ = arg min
β


m∑
i=1

li (βi) +
∑

(i,j)∈H

λijgij (βi − βj)


where β̂ =

(
β̂1, β̂2, · · · , β̂m

)
.

gij (βi − βj): a function of the difference between βi and βj .

A commonly-seen example is the lq-norm distance:
gij (βi − βj) = ‖βi − βj‖q for q ∈ [1,∞].

q = 1 is called the fused lasso estimator.
q = 2 is called the fused group lasso estimator.
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Problem setting

When gij (βi − βj) is not separable in terms of βi and βj :

Reformulate the optimization problem and then solve the
reformulated optimization problem via the following iterative
scheme.

The iterative scheme is an example of the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011).
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Problem setting

βr+1 = arg min
β

(
m∑
i=1

li (βi) +
ρ

2
‖Gβ − γr + ηr‖22

)

γr+1 = arg min
γ

 ∑
(i,j)∈H

gij (γij) +
ρ

2λij

∥∥γ −Gβr+1 − ηr
∥∥2
2


ηr+1 = ηr +Gβr+1 − γr+1

where γ = {γij}(i,j)∈H, η = {ηij}(i,j)∈H, G is a matrix such

that ‖Gβ − γr + ηr‖22 =
∑

(i,j)∈H

∥∥∥βi − βj − γrij + ηrij

∥∥∥2
2
, and r is

the iteration number. Here G is a qHp×mp matrix, where
qH = |H| is the number of edges of H.

The coupling quadratic term is not separable.



Introduction Method Simulation study Discussion Supplementary Materials–An application

Bottleneck

Also consider: the loss function li (βi) = 2−1 ‖yi −Xiβi‖22,
where yi is an nr dimensional vector and Xi is an ni × p matrix.
The first line has a closed-form representation

βr+1 =
(
XTX + ρGTG

)−1 [
XT y + ρGT (γr − ηr)

]
where X = diag (X1, X2, · · · , Xm) and y = (y1, y2, · · · , ym),
XTX + ρGTG is an mp×mp matrix.

XTX + ρGTG costs O
(
np2
)

+O(nnz(G) ·mp) +O
(
mp2

)
flops, where n =

∑m
i=1 ni, ni is the number of rows of Xi, and

nnz(G) is the number of non-zero valued elements in G.
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Bottleneck

1 Direct method by performing inverse of XTX + ρGTG via
the GaussJordan elimination. Cost O

(
m3p3

)
.

2 Use the Cholesky-forward-backward-substitution.

V zr+1 = XT y + ρGT (γr − ηr)
V Tβr+1 = zr+1

where V is the lower triangular matrix associated with the
Cholesky decomposition of the form V V T = XTX + ρGTG.

Run fast due to the triangular structure of V . Computing the
Cholesky decomposition costs O

(
m3p3

)
flops.
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Bottleneck

Recently ADMM-based algorithms for solving the similar
optimization problem.

1 Hallac (2015) proposed an ADMM algorithm by introducing a
set of auxiliary variables to decouple the linear constraints and
derived a closed form representation for the proximal operator
of the l2-norm distance function.

2 Ramdas and Tibshirani (2016) solved the l1 fused lasso
problem by transforming it to its dual problem and used a
clever linear algebra technique to decouple the Gram matrix
GTG for fast computation.

3 Zhu (2017) reformulated the problem by introducing a
diagonal matrix D � GTG using the pre-conditioned
technique and adopting an iterative scheme based on the idea
of primal-dual algorithms. This iterative scheme can run fast
since D is a diagonal matrix
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This paper

1 Without carrying out numerical computation involving the
linear operator G.

2 Computational cost.

3 Parallel computing.

4 Convergence properties.
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The primal problem

Redefine the optimization problem:

min
p,a,θ

m∑
i=1

li (βi) +
∑

(i,j)∈H

λijgij (αij)

subject to αij = θij − θji for (i, j) ∈ H
θij = βi for j ∈ N (i) and i = 1, 2, · · · ,m

where N (i) = {j : (i, j) ∈ H or (j, i) ∈ H}.

Call the constrained optimization problem the primal problem:
{βi}mi=1 and {αij}(i,j)∈H the primal variables, and {θij , θji}(i,j)∈H
the auxiliary variables.
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The primal problem

Derive the Lagrangian of the primal problem:

L(β, α, θ, τ, ξ)

=

m∑
i=1

li (βi) +
∑

(i,j)∈H

λijgij (αij)

+
∑

(i,j)∈H

ρ 〈τij , αij − (θij − θji)〉+

m∑
i=1

∑
j∈N (i)

ρ 〈ξij , βi − θij〉

where {τij}(i,j)∈H and {ξij , ξji}(i,j)∈H are the dual variables, ρ ≥ 0
is a scale parameter.
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The primal problem

Derive an augmented Lagrangian by introducing two sets of
quadratic coupling terms to the constraints αij = θij − θji for
(i, j) ∈ H, and θij = βi for j ∈ N (i):

Laug (β, α, θ, τ, ξ) =

m∑
i=1

li (βi) +
∑

(i,j)∈H

λijgij (αij)

+
ρ

2

∑
(i,j)∈H

‖αij − (θij − θji) + τij‖22 −
ρ

2

∑
(i,j)∈H

‖τij‖22

+
ρ

2

m∑
i=1

∑
j∈N (i)

‖βi − θij + ξij‖22 −
ρ

2

m∑
i=1

∑
j∈N (i)

‖ξij‖22
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Iterative scheme

Propose the following iterative scheme by incorporating
mixing strategy:

1 βr+1
i =

arg minβi

(
li (βi) + ρ|N (i)|

2

∥∥∥βi
− 1

|N (i)|
∑
j∈N (i)

(
θrij − ξrij

)∥∥∥2
2

)
for

i = 1, 2, · · · ,m
2 αr+1

ij =

arg minαij

(
gij (αij) + ρ

2λij

∥∥αij − (θrij − θrji)+ τ rij
∥∥2
2

)
for (i, j) ∈

H
3 θr+1

ij = 1
3

(
θrji − α

r+1
ij − τ rij + βr+1

i + ξrij + θrij
)

for (i, j) ∈ H

4 θr+1
ji = 1

3

(
θrij − α

r+1
ij − τ rij + βr+1

j + ξrji + θrji
)

for (i, j) ∈ H

5 τ r+1
ij = τ rij −

(
θr+1
ij − θr+1

ji

)
+ αr+1

ij for (i, j) ∈ H

6 ξr+1
ij = ξrij − θ

r+1
ij + βr+1

i for (i, j) ∈ H

7 ξr+1
ji = ξrji − θ

r+1
ji + βr+1

j for (i, j) ∈ H
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Stopping criterion

Given that 3− 7 hold, have

ξr+1
ij + τ r+1

ij = ξr+1
ji − τ

r+1
ij = θr+1

ij − θrij + θr+1
ji − θ

r
ji

In practice, use

∆primal

(
βr+1, αr+1, θr+1

)
=

1

5qH
√
p

∑
(i,j)∈H

(∥∥θr+1
ij − θrij

∥∥
2

+
∥∥θr+1
ji − θ

r
ji

∥∥
2

+
∥∥βr+1

i − θr+1
ij

∥∥
2

+
∥∥βr+1

j − θr+1
ji

∥∥
2

+
∥∥αr+1

ij −
(
θr+1
ij − θr+1

ji

)∥∥
2

)
≤ εprimal use 5qH

√
p

and

∆dual

(
ξr+1, τ r+1

)
=

1

2qH
√
p

∑
(i,j)∈H

(∥∥ξr+1
ij + τ r+1

ij

∥∥
2

+
∥∥ξr+1
ji − τ

r+1
ij

∥∥
2

)
≤ εdual use 2qH

√
p
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Computational Complexity at Each Iteration

The computational cost at each iteration is proportional to
the number of the data centers m or the number of pairwise
comparisons qH. If qH is proportional to m, the computation at
each iteration will increase linearly in terms of the number of data
centers m.

The computational cost for one iteration is

O

(
mmax

i
Ri

)
+O

(
qH max

(i,j)∈H
Rprox
ij

)
+O (qHp)

flops, where Ri is the computation cost for obtaining step− 1 for
i, Rprox

ij is the computational cost for computing step− 2 for
pairwise comparison (i, j), and p is the dimension of the parameter
vector.
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Data generation–linear regression model

The response is yik ∼ Normal
(
xTikβi, 0.25

)
, i = 1, 2, . . . ,m

and k = 1, 2, . . . , ni. xik is a p-dimensional vector of covariates
corresponding to data point k from data center i, and ni is the
size of the data from data center i.

Assume βi =
∑5

g=1 ωgI {ai = g}, where ai ∼ Uniform
({1, 2, . . . , 5}).

In practice, let p = 10, and the covariate vector(
ωT1 , ω

T
2 , . . . , ω

T
5

)
as

ω =


−2 2 −2 2 −2 2 −2 2 −2 2
2 −2 2 −2 2 −2 2 −2 2 −2
2 2 2 2 2 −2 −2 −2 −2 −2
−2 −2 −2 −2 −2 2 2 2 2 2
−1 3 −1 3 −1 3 −1 3 −1 3


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Data generation–logistic regression model

The response is

yik ∼ Bernoulli
(
exp

(
xTikβi

)
/
(
1 + exp

(
xTikβi

)))
for i = 1, 2, . . . ,m, and k = 1, 2, . . . , ni.

Set ω =
(
ωT1 , ω

T
2 , . . . , ω

T
5

)

ω =


1 1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1
−0.1 0.1 1 1 0.2 −0.2 0.2 −0.2 0.2 −0.2
−0.1 0.1 −0.1 0.1 1 1 −0.1 0.1 −0.1 0.1
−0.1 0.1 −0.1 0.1 −0.1 0.1 1 1 −0.1 0.1
−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 1 1


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Convergence of the Algorithm

Pay attention on the primal error ∆primal (βr, αr, θr) and the
dual error ∆dual (ξr, τ r).

There exist relationships:

∆r
1 + ∆r

2 ≤ 5qH
√
p ·∆primal (βr, αr, θr)

∆r
3 + ∆r

4 ≤ 2qH
√
p ·∆dual (ξr, τ r)

If we can show that both ∆primal

(
βr, αr, θ̂r

)
and

∆dual (ξr, τ r) decrease at a rate of r−1/2, then we can confirm
that ∆r

1 + ∆r
2 = O

(
r−1/2

)
and ∆r

3 + ∆r
4 = O

(
r−1/2

)
, which

further verify the theoretical results in Theorem B.2
(∆r

i ≤ C
√
r−1/2) up to constants.
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Convergence of the Algorithm

Data generation: linear regression model to generate the
data for m = 500 data centers. For data center i, assume the
number of data points ni ∼ Poisson(100). For each data point,
the corresponding covariate vector xik ∼ Normal (0, I10×10).

Estimation: loss function li (βi) = (2ni)
−1 ‖yi −Xiβi‖22 and

penalty function λ
∑

(i,j)∈H ‖βi − βj‖2. Define H as

N (i) =

{
{i+ 1, i+ 2, · · · , i+ d} for i = 1, 2, · · · ,m− d
{i+ 1, i+ 2, · · · ,m} for i = m− d+ 1, · · · ,m− 1

The number of edges of H is equal to 2−1
(
2md− d2 − d

)
. Let

d = 20, and the number of edges in H is qH = 9790.
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Convergence of the Algorithm

Performance measures: Evaluate the primal error, the dual
error, and the relative optimal error, which is defined as

∆opt (βerg,r, αerg,r)

=

∣∣∣∑m
i=1 li (βerg,ri ) +

∑
(i,j)∈H λ

∥∥∥αerg,r
ij

∥∥∥
2
−ΨADMM

primal

∣∣∣∣∣∣ΨADMM
primal

∣∣∣
where βerg,ri and αerg,r

ij are the ergodic average of sequences

{βsi }
r
s=1 and

{
αsij

}r
s=1

, respectively, and ΨADMM
primal =∑m

i=1 li
(
βADMM
i

)
+
∑

(i,j)∈H λ
∥∥∥γADMM

ij

∥∥∥
2
.

Stop at r = 2000.
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Convergence of the Algorithm
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Runtime of the algorithm

Whether has an advantage in computational time over the
ADMM-based iterative scheme when the number of data centers
m and the number of pairwise comparisons q increase.

Data generation: linear regression model to generate the
data. Vary the number of data centers from m = 100 to
m = 1000 to generate the data. For data center i, the number of
data points ni ∼ Poisson(100). For each data point,
xik ∼ Normal (0, I10×10).

Parameter estimation: The edges of the comparison graph
H vary from 1790 for m = 100 to 19790 for m = 1000.

Set the tolerance errors εprimal = εdual = εADMM = 5× 10−3.
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Runtime of the algorithm

Performance measures:

(a) Runtime of computing initial values: It includes the
runtime of coding the linear operator G, computing the
Cholesky decomposition of XTX + ρGTG for primal model
and the runtime of computing

(
XT
i Xi

)−1
for i = 1, 2, . . . ,m

for our method.

(b) Aggregated runtime of iteration: It is the sum of the
runtime of carrying out estimation under the five different
tuning parameter values.

(c) Total runtime: The sum of (a) and (b).
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Runtime of the algorithm
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Runtime of the Algorithm: Parallel Implementation

Data generation: use logistic regression model and vary the
number of data centers from m = 1000 to m = 1000000. For each
data center, the number of data points ni ∼ Poisson(100). For
each data point, fix the first covariate equal to 1 and generated the
rest of 9 covariates from Uniform{0, 1}.

Estimation: the fused group penalty function. Set
comparison graph with d = 1.

Computational environment: Carry out step− 1 in parallel
under multiple cores and do computation of the rest under a single
core.

Algorithm settings: two different approaches to obtain
step− 1.
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Runtime of the Algorithm: Parallel Implementation

βs+1,r
i = arg min

βi

{
1

2

(
φs,ri − Σs,T

i Xiβi

)T (
Σ−1i

)s,r
(φs,ri − Σs,r

i Xiβi)

+
ρ|N (i)|

2

∥∥βi− | N (i) |−1 bi
∥∥2}

=
(
XT
i Σs,r

i Xi + ρ|N (i)|I
)−1 (

XT
i φ

s,r
i + ρbi

)
where Σs,r is an ni × ni diagonal matrix with the (k, k) th entry
(Σs,r

i )kk = µs,rik
(
1− µs,rik

)
, µs,rik =

exp
(
xTikβ

s,r
i

)
/
[
1 + exp

(
xTikβ

s,r
i

)]
, φs,ri is an ni dimensional

vector with the kth entry (φs,ri )k = yik − µs,rik + (
∑s,r

i )kk x
T
ikβ

s,r
i ,

and bi =
∑

j∈N (i)

(
θrij − ξrij

)
is a p-dimensional vector that is

fixed throughout the iteration.

Stopping criterion:
∥∥∥βs+1,r

i − βs,ri
∥∥∥
2
/
√
p ≤ ε.
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Runtime of the Algorithm: Parallel Implementation

βs+1,r
i = arg min

βi
{〈∇li (βs,ri ) , βi − βs,ri 〉

+
Ai
2
‖βi − βs,ri ‖

2
+
ρ|N (i)|

2

∥∥βi − |N (i)|−1bi
∥∥2}

where Ai is the gradient Lipschitz constant associated with the
loss function li (βi).

From the KKT conditions we can obtain a closed form
representation for βs+1,r

i in terms of βs,ri , yi, Aj and ρ in a way
such that

0 ∈ ∇li (βs,ri ) +Ai

(
βs+1,r
i − βs,ri

)
+ ρ | N (i) | βs+1,r − ρbi

⇔ (Ai + ρ|N (i)|)βs+1,r
i ∈ Aiβs,ri + ρbi −∇li (βs,ri )

⇔ βs+1,r
i ∈

Aiβ
s,r
i + ρbi

Ai + ρ|N (i)|
− 1

Ai + ρ|N (i)|
∇li (βs,ri )
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Runtime of the Algorithm: Parallel Implementation
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Accuracy of the algorithm

Study whether sequences generated by the algorithm can
provide good performance in estimation and prediction. Investigate
how performance of the estimation varies as the number of data
points in each data center varies.

Data generation: use logistic regression model to generate
the data for m = 100 data centers. For each data center, the
number of data points ni ∼ Poisson(N), where N is the mean
number of data points collected at each data center. Vary the
mean number of data points from N = 100 to N = 2000.
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Accuracy of the algorithm

Estimation: Carry out the estimation under 20 tuning
parameter values and then used a model selection criterion to
select the best one. First carry out maximum likelihood estimation
for each βi and denote β̂SepMLE

i . Then define the 20 tuning
parameter values as the 20 different quantiles of the sequence{∥∥∥β̂SepMLE

i − β̂SepMLE
j

∥∥∥
2

}
(i,j)∈H

. The maximum value of λ was

max(i,j)∈H

∥∥∥β̂SepMLE
i − β̂SepMLE

j

∥∥∥
2
, the minimum value of λ as

the 0.1 percent quantile of
{∥∥∥β̂SepMLE

i − β̂SepMLE
j

∥∥∥
2

}
(i,j)∈H

.

Given that λ was fixed, use a two-stage procedure to obtain
an estimate of βi for each data center.
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Accuracy of the algorithm

First stage: estimate αij = βi− βj . With estimate α̂λij , start a
post-processing process by constructing the graph

Uλ =
{

(i, j) :
∥∥∥α̂λij∥∥∥

2
= 0
}

Then label the m data centers by applying community detection
techniques (’cluster fast greedy’ function in R package ’igraph’) to
partition nodes of Uλ. Let K̂BS,λ denote the number of clusters in
the partition.

Second stage: group data points from data centers in the
same cluster and carry out maximum likelihood estimation
separately with the K̂BS,λ clustered datasets. Let β̂BS,λ

i denote the
regression estimate corresponding to data center i.
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Accuracy of the algorithm

Estimation: Model selection criteria:

AIC(λ) = 2

m∑
i=1

li

(
β̂BS,λ
i

)
+ 2pK̂BS,λ

BIC(λ) = 2

m∑
i=1

li

(
β̂BS,λ
i

)
+ pK̂BS,λ log

(
m∑
i=1

ni

)

Algorithm settings: IRLS scheme to obtain step− 1.
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Accuracy of the algorithm

Performance measures: Let Qtrue = {Qtue
u }u be the true

partition of nodes and Q̂BS =
{
Q̂BS
v

}
v

be the partition of nodes

generated by community detection techniques.

(a) Estimated number of clusters
(
K̂BS

)
.

(b) Information quality ratio (IQR):

IQR
(
Qtrue , Q̂BS

)
=

∑
u,v P

(
Qtrue
u ∩ Q̂BS

v

)
logP (Qtrue

u )P
(
Q̂BS
v

)
∑
u,v P

(
Qtrue
u ∩ Q̂BS

v

)
logP

(
Qtrue
u ∩ Q̂BS

v

) − 1

(c) Mean squared error (MSE):

MSE
(
β̂B
)

=
1

mp

m∑
i=1

∥∥∥β̂BS
i − βtrue

i

∥∥∥2
2
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Accuracy of the algorithm

Performance measures:
(d) Relative mean squared prediction error (relative MSPE):

relative MSPE
(
ŷBS

)
=

∑m
i=1

∥∥∥ŷnew,BSi − ynewi

∥∥∥2
2∑m

i=1

∥∥∥ŷnew,nulli − ynewi

∥∥∥2
2

where ynewi are newly generated data points not being used in the
estimation, and ŷnew,nulli is a vector of the predicted values of ynewi

using a logistic regression model only with the intercept term. Let
the number of newly generated data points nnewi = ni to generate
ynewi .
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Accuracy of the algorithm
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Advantages

1 Without carrying out numerical computation involving the
linear operator G.

2 Computational cost: scalable in terms of the number of data
centers m or the number of pairwise comparisons q at each
iteration.

3 If the loss function is separable in terms of the data centers,
parallel computing.

4 The sequence generated by the iterative scheme can make the
objective function approach to its optimal value with a rate
similar to the one obtained for the ADMM-based iterative
schemes.
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Discussion

1 Did not consider the problem in which the loss function is not
separable in terms of the parameter vectors.

2 Did not deal with the problem in which the loss function is
strongly convex.

3 Did not pay attention on the cases in which the dimension of
parameter vector p is large.

4 (Reviewers) How the convergence of the iterative scheme
depends on the topology of comparison graph H.

5 Although it can run the iterative scheme under a parallel
computing framework, it can only manage to run it in a
synchronous fashion.
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Causes of death in 367 towns in Taiwan

The data contain yearly numbers of dead people in terms of
their death causes in 367 towns in Taiwan. They are collected over
a 5-year period between 2008 and 2012. There are 29 death causes
in the data. The 29th cause is a combination of the main death
causes for about 80 to 95% of dead people in each town. The rest
of 28 causes are the ’rare’ death causes. By rare we mean those
occurring with small probabilities.

The dataset used in this section can be found in Open
Government Data (2012) and downloaded from
http://data.gov.tw/node/5965.

Aim is to cluster towns that have a similar pattern in the
rare death causes.
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Model estimation

Assume there are p+ 1 death causes. Let πja denote the
probability of a dead individual in town j who dies in cause a.
Model the logarithm of the odds for the death cause a against the
death cause p+ 1 in town j by

log

(
πja

πj(p+1)

)
= βja

We have

πja =
exp (βja)

1 +
∑p

a′=1 exp
(
βja′

) for a = 1, 2, · · · , p

and πja =
[
1 +

∑p
a′=1 exp

(
βja′

)]−1
for a = p+ 1. The parameter

vector βj = (βj1, βj2, · · · , βjp) characterizes the distribution of
death causes in town j.
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Model estimation

There are m towns, and each town has c observations. The
minus logarithm of the likelihood function is

l(β) =

m∑
j=1

l (βj)

= −
m∑
j=1

(
c∑
t=1

{
p∑

a′=1

yjta′βja′ − njt log

[
1 +

p∑
a′=1

exp
(
βja′

)]})

where njt =
∑p+1

a′=1 yjta′ is the number of deaths in observation t
in town j. The fused group lasso estimate of β = (β1, β2, · · · , βm)
is defined by

β̂ = arg min
β1,β2,··· ,βm


m∑
j=1

l (βj) + λ
∑

(j,k)∈H

‖βj − βk‖2


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Model estimation

The comparison graph H is defined by

H =
{

(j, k) : d
(
φ̂j , φ̂k

)
≤ bthr

}
d
(
φ̂j , φ̂k

)
is a distance function, bthr ≥ 0 is a threshold value, and

φ̂j =
(
φ̂j1, φ̂j2, · · · , φ̂jp

)
is a p-dimensional vector in which each

φ̂ja is defined by

φ̂ja =

∑s
t=1 yjta∑s

t=1 yjt,p+1

Define d
(
φ̂j , φ̂k

)
=
∥∥∥φ̂j − φ̂k∥∥∥

∞
.
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Model estimation

Use the Silhouette coefficient to evaluate quality of a partition:

Silhouette coefficient =

 1

|{j : |Cj | ≥ 2}|
∑

j:|Cj |≥2

v2j − v1j
max {v1j , v2j}


where v1j = (|Cj | − 1)−1

∑
k∈Cj

(
φ̂ja − φ̂ka

)2
, v2j =

(m− |Cj |)−1
∑

k/∈Cj

(
φ̂ja − φ̂ka

)2
, φ̂ja is the empirical odds of

death cause a for town j, Cj is the cluster that town j belongs to,
and m = 367 is the number of towns.
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Result
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