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Concerned problem

Concerned with the following penalized estimation problem:

B =arg min DB+ D Nijgis (Bi— By)

i=1 (i.7)eH

where 3 = (31,32,--- ,Bm).

@ [ (B;): loss function associated with data from data center i.
@ [;: p-dimensional vector.

@ #H: undirected graph.

@ )\;; > 0: tuning parameter.
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Concerned problem

Concerned with the following penalized estimation problem:

B—argmln Zl Bz Z )\ngg 6])

i=1 (i,4)eM

where B = (Bla BZv T aBm) .
@ i (Bi — B;): a function of the difference between j3; and f3;.

A commonly-seen example is the [,-norm distance:
9ij (Bi = Bj) = |IBi = Bjll, for q € [1,00].

q = 1 is called the fused lasso estimator.

q = 2 is called the fused group lasso estimator.
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Problem setting

When g;; (8; — ;) is not separable in terms of 3; and f;:

Reformulate the optimization problem and then solve the
reformulated optimization problem via the following iterative
scheme.

The iterative scheme is an example of the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011).
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Problem setting

m

r+1 . . . B AT rn2
B = argmin (;lz (Bi) + 5 IGB—=~"+n ||2)

: P 2
Y =argmin | D gy () + 5y |1y = GET =
(i.j)EM K
777“-i-1 — nr + Gﬁr-i-l N 7T+1

where v = {7ij}(i,j)eH' n= {nij}(i,j)eﬂ' G is a matrix such

2
2 .
that |GB =" +1"ll3 = 2(i jyen ‘ Bi — Bj — iy + i ,and ris
the iteration number. Here G is a gip X mp matrix, where
qu = |H| is the number of edges of H.

The coupling quadratic term is not separable.
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Bottleneck

Also consider: the loss function I; (3;) = 271 |ly; — XiBi/3,
where y; is an n, dimensional vector and X; is an n; X p matrix.
The first line has a closed-form representation

gr+t = (XTX —|—pGTG)71 [XTy+pGT (" _777‘)]

where X = diag (X1, Xo, -+, Xm) and y = (y1, Y2, * ,Ym),
XTX 4+ pGTG is an mp x mp matrix.

XTX + pGTG costs O (np?) + O(nnz(G) - mp) + O (mp?)
flops, where n = Z?il n;,n; is the number of rows of X;, and
nnz(G) is the number of non-zero valued elements in G.
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Bottleneck

1 Direct method by performing inverse of X7 X + pGT G via
the GaussJordan elimination. Cost O (m?p?).
2 Use the Cholesky-forward-backward-substitution.
Vet = XTy + pGT (v — ")
yTgrel — pr+l

where V' is the lower triangular matrix associated with the
Cholesky decomposition of the form VVT = XTX + pGTG.

Run fast due to the triangular structure of V. Computing the
Cholesky decomposition costs O (m3p3) flops.
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Bottleneck

Recently ADMM-based algorithms for solving the similar
optimization problem.

1 Hallac (2015) proposed an ADMM algorithm by introducing a
set of auxiliary variables to decouple the linear constraints and
derived a closed form representation for the proximal operator
of the l-norm distance function.

2 Ramdas and Tibshirani (2016) solved the [; fused lasso
problem by transforming it to its dual problem and used a
clever linear algebra technique to decouple the Gram matrix
GTG for fast computation.

3 Zhu (2017) reformulated the problem by introducing a
diagonal matrix D = GTG using the pre-conditioned
technique and adopting an iterative scheme based on the idea
of primal-dual algorithms. This iterative scheme can run fast
since D is a diagonal matrix
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This paper

1 Without carrying out numerical computation involving the
linear operator G.

2 Computational cost.
3 Parallel computing.

4 Convergence properties.
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The primal problem

Redefine the optimization problem:

mle (8i) + Z Aijgij ( a”

(i,5)EM
subject to ayj = 0;; — 0;; for (i,7) € H
0;; = Bifor je N(i) and i = 1,2,--- ,m

where N'(i) = {j : (¢,7) € H or (j,i) € H}.

Call the constrained optimization problem the primal problem:
{B;i}%, and {aij}(i,j)EH the primal variables, and {Gij,eji}(i7j)e7_[
the auxiliary variables.
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The primal problem

Derive the Lagrangian of the primal problem:

(ﬁ;a 0,7,8)
—Zl Bz Z )\mgz] azy
(i,7)EH
+ Y plmgay — (6 — 05) +Z Y p{Gy.Bi— bi)
(i.5)€H =1 jEN(i)

where {Tij}(i jyew and {{ij,ﬁji}(”)epﬂ are the dual variables, p > 0
is a scale parameter.
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The primal problem

Derive an augmented Lagrangian by introducing two sets of
quadratic coupling terms to the constraints «;; = 0;; — 0;; for
(i,7) € H, and 6;; = B; for j € N (i):

Laug (B, ,0,7,&) = Zli (Bi) + Z Aijgij (i)
=1 (ij)eH
p
Z leij — (055 — 05:) + Tij”g 9 Z ||Tl]||§
( J)EH (i) M

I3 > -yl -5 D el
=1

i=1 jeN (i) =1 jeN (i)



Iterative scheme

Propose the following iterative scheme by incorporating

mixing strategy:

1 grtt =
arg mingi <li (ﬂl) N @] Z]EN(Z’) (95 glj)H ) for
1=1,2---,m

2 ozzfl =
arg Mgy, ; (923 (vij) + 5% Haij (97~ — 05 ) + 7 H ) for (i,7) €
H

300 =105 — ot —rn BT e 0y for (i) € H

407 =1 (00 — ol =7l + BT+ €l 4 07,) for (i,5) € H

oty ) i o )<

6 & =g — 0 4+ 87T for (i,5) € H

T =g = 0n B for (i,5) €M
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Stopping criterion

Given that 3 — 7 hold, have

r+1 r+1 _ ¢r+1 r+1 __ T+1 T r+1 T
§ij 47 =£0 - T 9 -0+ 0 -0,

In practice, use

T T s 1 T T T
Aprimal (ﬁ +1,O¢ +1,9 +1) = 5QH\/13 Z (HG - ng + ||9jj_1 _ejiHQ
(i,§)EH

1B = 0, 185 = 65, + [l = (85 = 05 ]L,)
< €primal USE 5q’H\/I)

and

Agear (71,7711 =

1 r+1 r+1 r+1 _ r+1 )
sz 3, (1657 7 i =)

J)EH
< €dual Use QQH\/ﬁ



Computational Complexity at Each lteration

The computational cost at each iteration is proportional to
the number of the data centers m or the number of pairwise
comparisons qy. If gy is proportional to m, the computation at
each iteration will increase linearly in terms of the number of data
centers m.

The computational cost for one iteration is

O (mmaxR; | + O ( gy max R™ ) + O (qup)
i @gen
flops, where R; is the computation cost for obtaining step — 1 for
i, Ry, is the computational cost for computing step — 2 for
pairwise comparison (i,7), and p is the dimension of the parameter
vector.
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Data generation—linear regression model

The response is y;. ~ Normal (xﬁﬁi, 0.25), 1=1,2,...,m
and £k =1,2,...,n;. x;; is a p-dimensional vector of covariates
corresponding to data point k£ from data center ¢, and n; is the
size of the data from data center .

Assume (3; = 22:1 wgl{a; = g}, where a; ~ Uniform
({1,2,...,5}).

In practice, let p = 10, and the covariate vector
(@ Wl ... wl) as

-2 2 -2 2 =2 2 =2 2 =2 2
2 -2 2 -2 2 =2 2 =2 2 =2
w = 2 2 2 2 2 =2 -2 =2 -2 =2
-2 -2 -2 -2 =2 2 2 2 2 2
-1 3 -1 3 -1 3 -1 3 -1 3
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Data generation—logistic regression model

The response is
Yix ~ Bernoulli (exp (z7,8:) / (1 + exp (z1.5)))

fori=1,2,...,m,and k=1,2,... n,.
Setw = (wf,wl,...,wi)

1 1 -01 01 -01 01 -01 01 =01 0.1
—-0.1 0.1 1 1 02 -02 02 =02 02 =02
w=| —-01 01 -01 0.1 1 1 -0.1 01 -0.1 01
-01 01 -01 01 —-01 0.1 1 1 -0.1 0.1
-01 01 -01 01 -01 01 -01 0.1 1 1
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Convergence of the Algorithm

Pay attention on the primal error Apimal (87, a",6") and the
dual error Agyal (£7,77).
There exist relationships:

7{ + Ag < 5QH\/13' Aprimal (Br’ ar’ er)

3+ A) <2g3/p - Aqual (£7,7")

If we can show that both Ayimal (,BT,ar,éT) and
Agyal (£7,7") decrease at a rate of r~1/2 then we can confirm
that A7 + A% = O (r~1/2) and A} + A} = O (r~%/2), which
further verify the theoretical results in Theorem B.2
(AT < CVr~1/2) up to constants.
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Convergence of the Algorithm

Data generation: linear regression model to generate the
data for m = 500 data centers. For data center i, assume the
number of data points n; ~ Poisson(100). For each data point,
the corresponding covariate vector x;;; ~ Normal (0, I1px10)-

Estimation: loss function I; (8;) = (2n;) ™" |lys — X.f:]|5 and
penalty function A3-; g [18i — Bjll, Define H as

N() = {i+1,i4+2,--,i+d}fori=1,2,---,m—d
ol i+ 1,042, ymyfori=m—d+1,--- ,m—1

The number of edges of H is equal to 271 (2md — d? — d). Let
d = 20, and the number of edges in H is gy = 9790.
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Convergence of the Algorithm

Performance measures: Evaluate the primal error, the dual
error, and the relative optimal error, which is defined as

Aopt (Berg,r’ aerg,’r)

m . erg,r erg,r _ JyADMM
‘Zi:l lz (5z ) + Z(i,j)e?—[ A Haij 9 ‘Ilprimal
N ‘ ADMM
primal
where 3;"®" and ag;®" are the ergodic average of sequences
T
r - ADMM
{B7}._, and {afj}5:1, respectively, and Wi 0F =
m ADMM ADMM
>t i (B )+ Xipen A ‘ Vij H2 :

Stop at r = 2000.
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Convergence of the Algorithm
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Figure 1. Plots for 3 he iteration number . 12,

primal X dark
gray,and light gray colors, respectively. Top Ieft: & = 0.01; top right: » = 1; bottom left = 4; bottom right: 1. = . The plots show that the objective error (plotted in
light ! primal error (plotted below the ine r~1/2.
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Runtime of the algorithm

Whether has an advantage in computational time over the
ADMM-based iterative scheme when the number of data centers
m and the number of pairwise comparisons ¢ increase.

Data generation: linear regression model to generate the
data. Vary the number of data centers from m = 100 to
m = 1000 to generate the data. For data center i, the number of
data points n; ~ Poisson(100). For each data point,

Til ~ Normal (0, IlOXlO)-

Parameter estimation: The edges of the comparison graph
‘H vary from 1790 for m = 100 to 19790 for m = 1000.

Set the tolerance errors €primal = €dual = €ADMM = b X 1073,
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Runtime of the algorithm

Performance measures:

@ (a) Runtime of computing initial values: It includes the
runtime of coding the linear operator GG, computing the
Cholesky decomposition of X7 X + pGTG for primal model
and the runtime of computing (XZ-TXi)f1 fori=1,2,...,m
for our method.

@ (b) Aggregated runtime of iteration: It is the sum of the
runtime of carrying out estimation under the five different
tuning parameter values.

@ (c) Total runtime: The sum of (a) and (b).
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Runtime of the algorithm

runume tor
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Figure2.
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the

lotted in red color).
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Runtime of the Algorithm: Parallel Implementation

Data generation: use logistic regression model and vary the
number of data centers from m = 1000 to m = 1000000. For each
data center, the number of data points n; ~ Poisson(100). For
each data point, fix the first covariate equal to 1 and generated the
rest of 9 covariates from Uni form{0,1}.

Estimation: the fused group penalty function. Set
comparison graph with d = 1.

Computational environment: Carry out step — 1 in parallel
under multiple cores and do computation of the rest under a single
core.

Algorithm settings: two different approaches to obtain
step — 1.
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Runtime of the Algorithm: Parallel Implementation

1 T
B = argmin {2 (07 —=2TX8) " (27) (657 — 22 Xi)

P|N ‘H@—IN lle}

= (X? 55X+ pIN @) (XT 65T + pbi)

where ¥%" is an n; x n; diagonal matrix with the (k, k) th entry
s,r s,r

(Zz ) 'LL’Lk (1 - 'uzk) My =

exp (z Zkﬁf ")/ [1+exp(z Zkﬂs )], 97" is an n; dimensional

vector with the kth entry (¢;"), = vir — pif + (05 ) up 208

and b; = Zje/\/(i) (0@- — 5;}) is a p-dimensional vector that is

fixed throughout the iteration.

/B;s+17r . s T

Stopping criterion: ’

/\f<e
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Runtime of the Algorithm: Parallel Implementation

ﬁf"'l’r = arg r%ln {(V1; (ﬂf’r) Bi — ﬂfjr>

pIN

A;
N e L PO

where A; is the gradient Lipschltz constant associated with the
loss function I; ().

From the KKT conditions we can obtain a closed form

representation for ,Bisﬂ’r in terms of 37", y;, A; and p in a way
such that

0€ VI (B;7) + Ai (B = B17) 4+ p | N | B4 — pby

& (Ai+ pIN@)) BT € AP + pbs — Vi (B7)
s+1r iB?r —|—pr 1

A A ING T AN
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Runtime of the Algorithm: Parallel Implementation

total runtime total runtime

6000
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Figure 3. Plots of total runtime against the number of pairwise comparisons g, . Left: Results under computational enviranments with 1 core and 5 cores; right: results

under computational environments with 10 cores and 20 cores. The plots show that the proposed method has an advantage in runtime under a parallel computing
framework.
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Accuracy of the algorithm

Study whether sequences generated by the algorithm can
provide good performance in estimation and prediction. Investigate
how performance of the estimation varies as the number of data
points in each data center varies.

Data generation: use logistic regression model to generate
the data for m = 100 data centers. For each data center, the
number of data points n; ~ Poisson(N), where N is the mean
number of data points collected at each data center. Vary the
mean number of data points from N = 100 to N = 2000.
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Accuracy of the algorithm

Estimation: Carry out the estimation under 20 tuning
parameter values and then used a model selection criterion to
select the best one. First carry out maximum likelihood estimation
for each 3; and denote AisepMLE. Then define the 20 tuning
parameter values as the 20 different quantiles of the sequence

{‘ ﬂisepMLE - BJSGPMLEH } . The maximum value of \ was
2 (i,5)eH
max; jyex ‘ BisepMLE - B]SepMLE , the minimum value of \ as

5SepMLE  ASepMLE

grete _ giente| 4

_ _ 27 (Lj)eH
Given that \ was fixed, use a two-stage procedure to obtain

an estimate of 3; for each data center.

the 0.1 percent quantile of {‘
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Accuracy of the algorithm

A

First stage: estimate ;; = 3; — 3;. With estimate dy, start a

post-processing process by constructing the graph
U)‘:{(i,j):‘ ‘2:0}

Then label the m data centers by applying community detection
techniques ('cluster fast greedy’ function in R package 'igraph’) to
partition nodes of U/*. Let KBS denote the number of clusters in
the partition.

Second stage: group data points from data centers in the
same cluster and carry out maximum likelihood estimation
separately with the KBS clustered datasets. Let [/S\ZBS”\ denote the
regression estimate corresponding to data center .

A
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Accuracy of the algorithm

Estimation: Model selection criteria:

AIC(A —221 (B5) + 2pR5

BIC(\ —225 ( BSA) + pRBSM log (fh)
i=1

Algorithm settings: IRLS scheme to obtain step — 1.
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Accuracy of the algorithm

Performance measures: Let Q'™ = {Q'® }, be the true
partition of nodes and QBS = {QES} be the partition of nodes
generated by community detection tecvhniques.

(a) Estimated number of clusters (KBS).

(b) Information quality ratio (IQR):

S B (@1 N QB%) logP Qe )P (QF)

IQR (the ,@BS) _ . (que - QUBS) e (que - @ES) —1

(c) Mean squared error (MSE):

e () = L 3

A2BS t
Bi _ Bi rue

2
2
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Accuracy of the algorithm

Performance measures:
(d) Relative mean squared prediction error (relative MSPE):

Zm Apew,BS __ g new H2

. .BS\ _ i=1 ||Y% Yi 9

relative MSPE (y ) = >
~new,null

S |t = gre |

where y*" are newly generated data points not being used in the

estimation, and §""'™! is a vector of the predicted values of yrew
using a logistic regression model only with the intercept term. Let
the number of newly generated data points nl*" = n; to generate

7
new

Yi -
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Accuracy of the algorithm
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Advantages

1 Without carrying out numerical computation involving the
linear operator G.

2 Computational cost: scalable in terms of the number of data
centers m or the number of pairwise comparisons g at each
iteration.

3 If the loss function is separable in terms of the data centers,
parallel computing.

4 The sequence generated by the iterative scheme can make the
objective function approach to its optimal value with a rate
similar to the one obtained for the ADMM-based iterative
schemes.
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Discussion

1 Did not consider the problem in which the loss function is not
separable in terms of the parameter vectors.

2 Did not deal with the problem in which the loss function is
strongly convex.

3 Did not pay attention on the cases in which the dimension of
parameter vector p is large.

4 (Reviewers) How the convergence of the iterative scheme
depends on the topology of comparison graph H.

5 Although it can run the iterative scheme under a parallel
computing framework, it can only manage to run it in a
synchronous fashion.
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Causes of death in 367 towns in Taiwan

The data contain yearly numbers of dead people in terms of
their death causes in 367 towns in Taiwan. They are collected over
a 5-year period between 2008 and 2012. There are 29 death causes
in the data. The 29th cause is a combination of the main death
causes for about 80 to 95% of dead people in each town. The rest
of 28 causes are the 'rare’ death causes. By rare we mean those
occurring with small probabilities.

The dataset used in this section can be found in Open
Government Data (2012) and downloaded from
http://data.gov.tw/node/5965.

Aim is to cluster towns that have a similar pattern in the
rare death causes.
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Model estimation

Assume there are p + 1 death causes. Let 7, denote the
probability of a dead individual in town j who dies in cause a.
Model the logarithm of the odds for the death cause a against the
death cause p + 1 in town j by

log( “ia ) = Bja
Tj(p+1)

We have

exp (Bja)

Tiq = fora:1727"'7p
M1+ exp (Bjr)

and j, = [1 + Zi/:l exp (Bja/)] L fora= p + 1. The parameter
vector 8 = (Bj1, Bj2, - , Bjp) characterizes the distribution of
death causes in town j.
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Model estimation

There are m towns, and each town has ¢ observations. The
minus logarithm of the likelihood function is

= 1(8)
j=1
m c p
YT
j=1 \t=1 la'=1

where nj; = 227;11 Yjta’ is the number of deaths in observation ¢
in town j. The fused group lasso estimate of 5 = (51,82, - , Bm)
is defined by

o]

a’'=1

B = arg min Zz B+ D 185 = Brlly

B1,B2, Goen
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Model estimation

The comparison graph # is defined by
H= {(]a k) d (ajvgk) < bthr}

d (@-7 ak) is a distance function, byn, > 0 is a threshold value, and
<$j = <$j1, $j2, e ,ajp> is a p-dimensional vector in which each

®ja is defined by
&5. _ Zf:l Yjta
= st=1Yjta
! Zle Yjt,p+1

Define d (qgg,égk) = Hggﬂ B akHoo.
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Model estimation

Use the Silhouette coefficient to evaluate quality of a partition:

) - 1 Vi — V14
Silhouette coefficient = —| Z 2 L

{5 +1C51 = 23] | =, maxc{vj, va}

~ ~ 2
where V15 = (‘C]| - 1)_1 ZkGCj ((bja - ¢ka) y V25 =

~ ~\2 ~
(m = 1Ci) ™" Sige, (%ia — dra) +@ja is the empirical odds of
death cause a for town j,C; is the cluster that town j belongs to,
and m = 367 is the number of towns.
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Result

Method BIC #£ of clusters Silhouette coefficient
Maximum likelihood estimation (MLE)  165,264.5 367 0

Fused group lasso (FGL) 110,496.9 33 0.746

MLE with k-means clustering (kMLE)  108,079.2 12 0.205

Table 1: Performance results for partitions based on the three estimations.
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