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ABSTRACT

Assessing conditional tail risk at very high or low levels is of great interest in
numerous applications. Due to data sparsity in high tails, the widely used quan-
tile regression method can suffer from high variability at the tails, especially for
heavy-tailed distributions. As an alternative to quantile regression, expectile
regression, which relies on the minimization of the asymmetric /,-norm and
is more sensitive to the magnitudes of extreme losses than quantile regres-
sion, is considered. In this article, we develop a new estimation method for
high conditional tail risk by first estimating the intermediate conditional expec-
tiles in regression framework, and then estimating the underlying tail index via
weighted combinations of the top order conditional expectiles. The resulting
conditional tail index estimators are then used as the basis for extrapolat-
ing these intermediate conditional expectiles to high tails based on reasonable
assumptions on tail behaviors. Finally, we use these high conditional tail expec-
tiles to estimate alternative risk measures such as the Value at Risk (VaR) and
Expected Shortfall (ES), both in high tails. The asymptotic properties of the
proposed estimators are investigated. Simulation studies and real data analysis
show that the proposed method outperforms alternative approaches.

KEYWORDS

Quantile regression, expectile regression, asymptotic, heavy-tailed distribution,
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1. INTRODUCTION

A noteworthy problem in many fields involving statistical applications is mod-
eling and predicting of extreme events. Extreme events usually refer to the
events that happen rarely but lead to significant consequences, for exam-
ple, large natural disasters, large financial loss, high medical costs, low birth
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2 J.HU, Y. CHEN AND K. TAN

weights. For such events, it is particularly interesting to model and estimate
the tail events of the underlying distribution rather than the averages. In other
words, we concentrate on the concept of “tail risk”.

Notably, finding a proper risk measure is one of the most important and
challenging tasks in financial risk management. Among numerous works in lit-
erature, Value at Risk (VaR) is arguably the most common risk measure used
in practice. VaR denotes the loss that is likely to be exceeded at a specified
probability level, which is actually the quantile of a portfolio loss distribu-
tion. However, VaR fails to fulfill the subadditivity property in general (Acerbi,
2002), and hence it is not a coherent risk measure according to the axiomatic
foundations of Artzner et al. (1999). Moreover, in some extreme cases, for
example, occurrences of catastrophic events, VaR becomes a conservative tail
risk measure because a quantile-based risk measure depends only on the prob-
ability of the occurrence of an extreme loss rather than the magnitude of the
extreme loss. It is, therefore, easy to construct two return distributions that
have different tail behaviors but the same VaR. Compensating for these two
weaknesses of VaR, expectiles, first introduced by Newey and Powell (1987),
are reasonable alternative to quantiles as they depend on both the tail real-
izations and their probabilities (Kuan et al., 2009), and they define a kind of
coherent risk measure. This is mainly due to their conception as least squares
analogues of quantiles. In addition, expectiles are attractive in applications
because they are more tail sensitive than VaR and ES. Finally, since there exists
a one-to-one mapping between quantiles and expectiles, as argued in Yao and
Tong (1996), and there is a link between VaR and ES, as addressed in Taylor
(2008), expectiles can be used to calculate VaR and ES simultaneously. Further
theoretical and numerical results obtained by Bellini and Di Bernardino (2017)
indicate that expectiles are perfectly reasonable alternatives to both classical
quantile-based VaR and ES.

Extreme value theory (EVT) provides another elegant mathematical tool
for analyzing extreme events. However, to our knowledge, few related works
have been performed with regard to the estimation of high conditional expec-
tiles. The literature of EVT mainly focuses on tail quantiles with independent
and identically distributed random variables (see Weissman, 1978; de Haan and
Ferreira, 2006; Li et al., 2010). In contrast, tail expectiles, as well as their rela-
tive statistical problems, are rarely mentioned in extreme value theory, unlike
VaR estimation and ES estimation. Fortunately, Daouia et al. (2018) and
Daouia et al. (2020b) proposed some intermediate and extreme expectile esti-
mators and developed their asymptotic properties. Daouia et al. (2020b) first
constructed asymmetric least squares estimator for the tail index and derived its
asymptotic normality theorem. In many applications, however, the tail quan-
tiles or tail expectiles of the variable Y of interest depend on some covariate
X, and thus, it is important to incorporate the covariate information into a
given analysis. For instance, risk managers in finance often seek to forecast
the low conditional quantiles of a portfolios future returns, or the conditional
expectiles on information from the past or assumptions on future interest rate
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changes (Cai et al., 2018). Therefore, our proposed work on high conditional
expectiles is meaningful. Without loss of generality, in this article, we focus on
the estimation of high conditional expectiles, since a low expectile of Y can be
viewed as a high expectile of — Y.

Different from typical EVT methods that estimate the tail index using the
upper quantiles (Hill, 1975), upper expectiles (Daouia et al., 2020b), or link
it to some covariates (Wang and Tsai, 2009), our proposal integrates expectile
regression and EVT to estimate the tail index. By replacing asymmetric /;-norm
with asymmetric -norm, expectile regression has gained increasing attention
in recent studies. Sobotka et al. (2013) investigated the relationship between
womens education and fertility in Botswana via semi-parametric expectile
regression. Kuan et al. (2009) proposed conditional autoregressive expectile
(CARE) models to assess VaR. Cai et al. (2018) applied expectile regressions
with partially varying coefficients to assess tail risk. Although expectile regres-
sion has found applications in various fields, to our knowledge, few works are
concerned with the estimation of high conditional expectiles. In this article, we
propose a novel method to extrapolate conditional expectiles with an extremely
high level by using expectile-based tail index.

To estimate the conditional expectiles in a very far tail, where few observa-
tions are available, we need some additional assumptions on the tail behavior.
First, we use expectile regression to estimate the “intermediate” conditional
expectiles at levels t,, where 7, is close to one but still in the “intermediate”
range (mathematically, v, — 1 and n(l — t,) > oo as n— oo, where n is the
sample size). Then, we estimate the underlying tail index via a weighted com-
bination of the top order conditional expectiles. Finally, we extrapolate these
intermediate conditional expectile estimates to a very high level t, (mathemati-
cally, this is a high level in the sense that 7, — 1 and n(1 — t)) — ¢, where cis a
positive constant) through the estimated tail index. These extreme conditional
expectiles are then used to calculate expectile-based VaR and expectile-based
ES, both in high tails.

Our proposed method enriches the literature in four ways. First, we propose
a method to estimate the tail index by virtue of conditional expectiles instead of
conditional quantiles as done by Wang et al. (2012). Second, we develop a para-
metric expectile regression model by borrowing information across covariates,
which has a more intuitive interpretation than existing methods. Third, we pro-
vide another method to estimate the high-tailed conditional VaR and ES based
on adapted extreme expectile-based tools. Finally, expectile regression is more
sensitive to extreme values than quantile regression, so it can play an early
warning role in the detection of heteroscedasticity in financial data applica-
tions. In addition, based on the asymmetric least squares loss, the computation
of expectile regression can be straightforward and simple, and the theoretical
development of expectile regression is more manageable than that of quantile
regression and the estimation procedure is more efficient as it uses the entire of
the conditional distribution information.

The rest of the article is organized as follows. Section 2 presents the pre-
liminaries of quantiles, expectiles and extreme value theory (EVT). Section 3
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4 J.HU, Y. CHEN AND K. TAN

illustrates our proposed estimation method and its asymptotic properties. In
Section 4, we conduct simulation studies to assess the finite sample perfor-
mance of the proposed method. The results indicate that the proposed method
is more efficient and accurate than quantile-based method when estimating
extremely high level of VaR and ES for zero-mean heavy-tailed distributions.
In Section 5, we apply the proposed method to two financial datasets of the
Chinese stock market. Finally, Section 6 concludes the article. All the technical
details about our proposed method are provided in the Appendix.

2. BACKGROUND

2.1. Quantiles and expectiles

Let Y denote a random variable with the distribution function Fy. Given
7 €(0, 1), the VaR at a probability level t is defined by the tth quantile ¢, :=
Fy(r)=inf{y e R: Fy(y) > t}. Koenker and Bassett (1978) proposed a method
to estimate the tth quantile by minimizing the following asymmetrically
absolute deviation problem:

g = argminE[|t —(Y <m)|-|Y — m|],
meR

where [(-) is the indicator function. By replacing the asymmetric /;-norm with

the asymmetric ,-norm, the tth expectile (see Newey and Powell, 1987) is

defined as follows:

& = argminE[|r —I(Y <m)|- (Y—m)z].
meR

In terms of interpretability, the tth quantile indicates the point where 1007%

of Y have values less than this number, while the tth expectile specifies the

position of &, such that the average distance from the data below &, to &, itself

is 100t% of the average distance between &, and all the data, that is,

_E[Y &Y <&)]
E[Y —&]

@2.1)

Thus, the &, shares an intuitive interpretation similar to that of ¢,, replacing
the number of observations by distance.

2.2. Extreme value theory

Throughout the paper, the notation a,~ b, represents that a,/b,— 1 as
n— oo. We focus on high expectiles in the right tail and restrict ourselves
in heavy-tailed distributions that are attracted to the maximum domain of
Pareto-type distributions with tail index 0 < y < 1.
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We say that Fy(-) is a Pareto-type distribution if its survival function satisfies

Fo):=1—-F@=y"""ey), (22

for y > 0 large enough, where ¢ is a slowly varying function at infinity, that
is, a positive function on (0, o) satisfying £(zy)/€(t) — 1, as t — oo, for any
y> 0. The index y tunes the tail heaviness of Fy, that is, the larger the index
is, the heavier the right tail is. The assumption y < 1 ensures the existence of
the first moment of Fy(-), and hence ensures the existence of expectiles. By
Corollary 1.2.10 in de Haan and Ferreira (2006), the model assumption (2.2) is
equivalent to

‘m U()(ZZ) _
t— 00 Uo(t) B

where Uy() =inf{y e R: Fy(y) > 1 —1/t} = F;'(1 — 1/1) for t > 1, representing
the (1 — 1/0)th quantile of the random variable. Under (2.2), Bellini and Di
Bernardino (2017) pointed out that

EO,‘L’
do,«

where ¢, and &, are the rth quantile and expectile of Fy(-), respectively. The
asymptotic equality of (2.4) establishes a connection between ¢, , and &, , under
the heavy-tailed distribution assumption, and this suggests us to estimate VaR
in a high level based on the high-tailed expectile.

To obtain the asymptotic normality of the tail index estimation, the follow-
ing second-order regular variation condition, which is denoted by C,(v, p, A),
is assumed as follows:

Condition Cy(y, p, A): for all z > 0,

1 P
im —— [M —ZV} S L} (2.5)
=00 A(1) | Up(?) P

where A(f) € RV (p) means that A(¢) is a regularly varying function with index
p, which satisfies lim,_, ., 4(tz)/ A(t) = z* for all z € R*.

Hereafter, (z» —1)/p is represented as logz when p =0. The condition
Cy(y, p, A), which controls the rate of convergence in (2.3), is a standard
condition to obtain the asymptotic properties in extreme value theory. For
more details on the second-order condition, we refer to de Haan and Ferreira
(2006), which gives abundant examples of commonly used continuous distri-
butions that satisfy the condition (2.5), along with thorough discussions on
the interpretation and the rationale behind this second-order condition. For
instance, the ¢ distribution with the degree of freedom v satisfies (2.5) where
y=1/vand p=-2/v.

2 forall z>0, 2.3)

~@yTt =1y as T, (2.4)
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6 J.HU, Y. CHEN AND K. TAN
3. PROPOSED METHOD

Quantiles and expectiles are readily extended to conditional quantiles and con-
ditional expectiles. In practice, quantile regression is more robust to outliers
than expectile regression. In other words, quantile regression is not sensitive to
outliers, and this makes it inefficient and underestimated for heavy-tailed dis-
tributions; this motivates us to consider the method of estimating the tail index
y based on expectile regression.

Suppose we observe a random sample {(x;,y,),i=1,...,n} from the ran-
dom vector (X, Y), where x; is the p-dimensional design vector and vy, is the
univariate response variable. Denote Fy(-|x) the conditional distribution of YV
given x and &£y(7|x) the tth conditional expectile of Y given x. Then &y (t|X) is
expressed as the following linear expectile regression model:

Ey(t|x)=a(r) +x"B(r), forallt ez, 1], (3.6)
where the expectile coefficients (a(t), B(r)T)T may vary across t € [t;, 1], and 7
is a defined expectile level that can be close to 1. The estimator can be obtained
in the form of a vector that minimizes the following asymmetric least squares
loss function:

n
Q,(, Bit) =) 0:(yi—a — X/ B), (3.7)
i=1
where o.(u)=|t —I(u <0)| -1 is the expectile loss function. It should be
pointed out that the computation required for expectile regression is more
straightforward than that of quantile regression since it is based on the squared
loss function as in (3.7) and can be easily solved by an iterated weighted
least squares algorithm. Additionally, the sensitivity of expectile regression to
extreme values can be beneficial when detecting heteroscedasticity in a given
dataset, as this is one of the main issues in financial applications.

Our main objective in this work is to estimate the conditional expectile
&y(z,|x), as well as the expectile-based VaR and ES at an extremely high level.
Here, 7, may approach one at any rate. Throughout this article, we also assume
that Fy(-|x) is in the maximum domain of attraction of a Pareto-type distri-
bution, that is, for a given random sample Yi,..., Y, from Fy(-|x), there are
sequences @, > 0 and b, € R such that

maxi<j<pn YI - bn —
P (a— sy) — expl(~(1 +yy)"'"),

as n— oo for 1 4+ yy >0, where y is the tail index. The key idea of the pro-
posed method is to estimate a sequence of intermediate expectiles at levels
n(l — t,) = oo, and extrapolate those intermediate expectiles to an extreme
level n(1 — 7,) — ¢, where c is a positive constant.
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ESTIMATION OF HIGH CONDITIONAL TAIL RISK 7

First, define a sequence of expectile levels 7, < T,_x < Typp1 < < Ty
where m =n — [n"] with [a] denoting the integer part of a and n > 0 is some
small constant that make sure [#"] < k. Here, assume that k =k, — oo and
k/n— 0 as n— oo. For each j=n—k,n—k+1,...,m, define 7,=j/(n+ 1)
and estimate (@(z)), B(z;)7)" by

(@), B(x)")" = arg min 0,((@. B): 7). (3.8)

Then, for a_given x, we propose a novel method to estimate the tail index
y based on g = §y(tjlx) =a(r) + XTﬂ(‘L'j) forj=n—k,n—k+1,...,m. The
expectiles 5/ can be roughly regarded as the upper order statistics of a sample
from Fy(-|x). Recalling that Fy(-|x) is in the maximum domain of attraction of
a Pareto-type distribution, therefore, similarly to Daouia et al. (2020b), we can
estimate y by

k

~ 1 én—j
= E log 3.9
P e & PR G2

In contrast, the estimator 3 can be seen as y(x), which leads to a nonlinear
combination of the covariates. Daouia et al. (2018) extrapolated any consis-
tent intermediate expectile estimator to estimate an expectile at an extremely
high level, that is, estimating &,_, to a very high level t/ by using the classi-
cal Weissman extrapolation formula (Weissman, 1978). Consequently, £y (7, |x)

can be estimated by
-~ 11—t 7
Bom () B (3.10)
-7

The tail index y estimated by (3.9) differs from that estimated by the upper
k —[n"] conditional quantiles in Wang et al. (2012). In this article, we are
mostly concerned about financial data applications where extreme events and
heteroscedasticity exist. Therefore, we propose a new method to estimate the
tail index based on the k — [#"] upper expectiles S,, PR ‘;‘m Sn ) for the
reason that expectile regression is more sensitive to those extreme values than
quantile regression. The asymptotic results hold for any choice of m such that
m <n— [n"], in our simulation studies, we choose n = 0.1 and our experiments
show that small values of 1 € (0, 0.25) work well. In the literature of extreme
value theory, the selection of k is an important and challenging problem. k can
be viewed as the effective sample size for tail extrapolation. A smaller & leads to
estimators with larger variances, while larger k results in more bias. In practice,
for the traditional tail index y estimated by quantiles, a commonly used heuris-
tic approach for choosing k is to plot the estimator of y versus k (Hill plot) and
then choose a suitable k£ corresponding to the first stable component of the
plot, see Section 3 in de Haan and Ferreira (2006) and the references therein.
However, for the recently proposed expectile-based tail index estimator, there
are few studies in the literature offer constructive suggestions for the selection
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8 J.HU, Y. CHEN AND K. TAN

of k. Despite that, we still employ Hill plots for choosing k in our studies.
Based on vast simulation experiments, we conclude that our proposed method
for selecting k corresponding to the inflection points of the quantile-based and
expectile-based Hill plots is more accurate than existing methods.

A risk measure that is commonly used as an alternative to VaR is ES. ES is
favored by practitioners, who are mostly concerned with the risk of exposure
to a catastrophic event that may wipe out an investment in terms of the size
of the potential losses. The quantile-based risk measure of ES for 7 €[0, 1) is
defined as follows (see Acerbi, 2002):

1 1

When Y is continuous, QFES, is coherent and identical to the Conditional VaR
(Rockafellar and Uryasev, 2000), known also as Tail Conditional Expectation
(TCE), defined as QTCE,:=E[Y|Y >¢.]. Both QES, and QTCE, can
then be explained as the average loss incurred in the tail event of a loss
higher than the ¢,. However, QFES; is a coherent risk measure while QTCE,
isn’t (Wirch and Hardy, 1999). Similarly to this intuitive tail conditional
expectation, Taylor (2008) has introduced and used the expectile-based form
XTCE, := E[Y|Y > &] as the basis for estimating the standard quantile-based
measure QTCE,. Because both XTCE, and QTCE, are not coherent risk
measures in general, Daouia ez al. (2018) suggested estimating the coherent
expectile-based form of ES

1 1

obtained by substituting the expectile &, for the quantile ¢, in QES. . This defini-
tion is more credible than X7T'CE, as it induces a proper coherent risk measure,
while maintaining the intuitive meaning of the conditional expectation. Due
to the asymptotic equivalence of XES, ~ XTCE, as T — 1 (see Daouia et al.,
2018), the tail values XES, and XTCE, share the same estimators, for both
intermediate levels 7 = 7, and extreme expectile levels 7 = 7,.

To estimate both the expectile-based and quantile-based forms of ES at
a very high level that may approach one at an arbitrarily fast rate, Daouia
et al. (2020b) suggested that the first step is to estimate these risk measures
at an intermediate level (tr, — 1 and n(l — 1,) = o0), and then extrapolate
the resulting estimates to the far tail by making use of the traditional Hill
estimator for the tail index y after that. Here, we extend their method by
replacing the traditional Hill estimator with our proposed expectile-based esti-
mator (expectHill estimator) 7. The following asymptotic equation, which is
the same as Proposition 1 in Daouia et al. (2020b), provides a guidance role in
the estimation procedure.
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ESTIMATION OF HIGH CONDITIONAL TAIL RISK 9

Proposition 1. (Daouia et al., 2020b). Assume that Y follows a Pareto-type
distribution with tail index 0 <y <1 and Y_:=min{Y, 0}, where E|Y_| < c0.

Then,
XES, &  E[Y|Y >&] XES, 1 E[Y|Y > &]
~—~———"" and ~ ~ , T— 1.
QEST q- E[Y| Y > qr] gr 1 - 14 ‘i:r

Under the model assumptions that E|Y_| < oo and Y has a heavy-tailed
distribution (2.2), we want to estimate the value of the expectile-based form
XES,,, where 7, — 1 and n(l — t,) - ¢ < oco. From Proposition 1, we can
estimate XES, using the asymptotic equivalence XES, ~ (1 —y)™'&,. By
replacing y and &, with their estimators ¥ and /f;‘\,,;, which were described in
(3.9) and (3.10), respectively, we define the estimator XES., as follows:

XES, :=(1-9)"&,. (3.13)

Then, we return to the estimation of the usual form QES, of quantile-
based ES, for a pre-specified tail level p, — 1 with n(1 — p,) — ¢ < co. Here, we
wish to derive alternative families of composite expectile-based estimators from
XES., introduced above, where 7, = 7,(p,) is chosen to make the establishment
of &, =gqp,, so that the asymptotic equivalences QES, ~ E[Y|Y > g, ] and
XES;, ~ E[Y|Y > &.] in Proposition 1 lead to QES,, ~ XES,,). In this way,

QES,,, inherits the extreme value estimator of XES,, itself, namely A/’B’t,;(pn),
which can be similarly computed by the same method as (3.13). Thus, a remain-
ing task is to estimate the extreme level 7, = 7,(p,) such that &, =g¢,,. It has
been found in Proposition 3 of Daouia et al. (2018) that such a level satisfies

1—/(pn) ~(1 —pn)lL as n— oo,
—y

under the model assumption of heavy tails with 0 <y < 1. Plugging in our
expectHill estimator ¥, we can estimate 7, (p,) by

o~

T (p):=1-(1 —pn)ﬁ. (3.14)

By replacing 7,(p,) with T/(p,), these two estimators é}n(m and A/’l;?ﬂ(pn) can be
similarly calculated using the methods in (3.10) and (3.13), and they can be seen
as the estimates of ¢,, and QES, , respectively.

n?

3.1. Asymptotic properties

Denote Z = (1, X")", z:=(1,x)", 8(r) = (a(x), B(r)")", and puz = E(Z). We
now make further assumptions as follows:

(A1) The variable z; has a compact support Z, and E(ZZ") is positive definite.
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10 J.HU, Y. CHEN AND K. TAN

(A2) There exists an auxiliary line z— z76(r) with 0 <r <1 and a bounded
vector A(r) such that for Y* = Y — z76(r) and some Pareto-type distribu-
tion function Fy(-) with tail index 0 <y < 1/2,

1 — Fy*(t|Z)

Kol -y = - H@OPK@U+ o),

uniformly in z € Z as t — oo, where K(-) and K () are positive, continu-
ous, and bounded functions on Z and § > 0 is a constant.

(A3) (a) LFy!(tlz)~ L Fy'{t/K(z)} uniformlyinz€ Z as T — 1;
(b) %FJ (1 — 1) is regularly varying at zero with index —y — 1.

(A4) Uy(t)=F,'(1 —1/t) satisfies the second-order condition (2.5) with
0<y<1/2,p<0,and A(t) = ydt® with d # 0.

Conditions A1-A4 are similar as Conditions B1-B4 in Wang et al. (2012).
However, a minor change in the condition 0 <y < 1/2 is required to ensure
that the asymmetric least squares estimators of &, are asymptotically Gaussian.
Note that for U, the second-order condition (2.5) is equivalent to

U(t) = ct” |:1+%{1+0(1)}i| as ¢ — oo, (3.15)

with some constant ¢ > 0. We call ¢ the corresponding constant. According to
A(t) = ydt® with d # 0 and some straightforward calculations, it follows that
(3.15) is equivalent to

-1

1 — Fy(x) = (f) ” [1 + 4 (f)p/y (1 +0(1)}] as x—o0,  (3.16)
¢ p \c

for example, see Gomes and Pestana (2007).

Most conventional regression models are covered by these regularity con-
ditions, for example, the location-scale shift regression model: ¥ = o + x”f +
(1 +x"o)e, where € ~ Fy(-) (see also the example in Wang et al., 2012); for
a given x, by denoting z=(1,x)7, z7o =1+x75, 0 =(a, B7)7, and Y* =
Y —z76, we have Fy-(y|z) = Fy{y/(z"a)}. Using Taylor expansion and (3.16),
we have

1—Fy(ylz) _1—Foly/(z"0)}
1-F()  1=F®)

_ (zTa)(l/y) |:1 + %((ZTG)MV _ 1) (Jﬁ)ﬂ/y (1 +0(1)>] ’
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where ¢ is a positive constant as defined in (3.15). Define K(z) = (z"¢)"/") and
K@z)= %{(ZTO')_”/V —1}. Then
1 —Fy:(y|2) B
K@)l — FoO)}

Since 1 — Fy(y) =~ (y/c)~!/7, Condition A2 holds with § = —p; thus

1 — Fy(t|2) B
K(z){1 — Fo()}
In addition, Fy-(y|z) = Fo{y/(z70)} leads to Uy-(t|z) = (z"a)Uy(t), and thus,

Condition A3(a) holds.
We now provide the asymptotic properties of the proposed estimators.

1= K@) (%)W (1 + o(1)).

1=(1 = Fy(0)) " K(z)(1 + o(1)). (3.17)

Theorem 3.1. Suppose that Model (3.7) and Conditions Al-A4 hold,
k=1 2n1logk — 0, Vk(n/k)y? — C>0 as n— oo, k=k,— oo, and k/n— 0,
where p=max(—y,p) and C is a constant. And the bias conditions
VKA(n/k) = ri € R and Vk/q. . — k> €R are satisfied. Then, for any given

z=(1,x"7, we have:
VEG(x) = 7) S Nb., v.), (3.18)
with
1=y t=17 Yyt =1y
b, = = E(Y|)— 2,
A= —y—p " EYR—
and
3
y, = 2y JTH'S{K(z) " H 'z,
1 -2y

where H= E[{K(Z)}"Y ZZ"), © = E[ZZ"] andA(-) is defined below by (A.1) of
the Appendix.

When the common index assumption is violated, the tail index ¥ = P(x) is
expected to vary with x. In Tail Index Regression (TIR) (see Wang and Tsai,
2009), the tail index is often assumed to be linear in x after some parametric
link transformations are performed. Our estimator y(x) can be viewed as a
nonparametric estimation of y(x) and thus can provide some guidance for the
choice of the required link function required in TIR.

To derive the asymptotic normality of the conventional Hill estimator
based on quantiles, with an asymptotic bias A, /(1 — p) and an asymptotic vari-
ance y? (see Theorem 3 in Wang e al., 2012), conditions involving the auxiliary
function A(-) in Theorem 3.1 are also required. Theorem 3.1 also features a
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12 J.HU, Y. CHEN AND K. TAN

further bias condition involving the quantile function ¢,, ,, and this is to be
expected in view of Proposition 1 in Daouia et al. (2020b), of which a con-
sequence is that the remainder term in the approximation & __s,)/&, ~ s
depends on both 4 and ¢;,.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold, n(1 — t)) = o(k)
and log (n(1 — t))) = o(v/k). Then,

vk (Ey(r,uz) .
log [k/(n(1 = )] \&x(,]2)

and by replacing p, with t,, we have

) 4 N(b,, v,), (3.19)

\/% %\Y(?(pn)k) ) d

n - 1 N bZ’ z/)s 320

log[k/(n(1 — pu))] ( qy(palz) = N(b:, v:) (3.20)
\/Z A//ETS‘?/(P ) d

1] = N 321

1og[k/(n(1—pn>)1( OES,, )* (b, 72, (3.21)

with (b,, v;) as in Theorem 3.1.

It is clear that the estimators in Theorems 3.1 and 3.2 share the same
asymptotic behavior from a theoretical point of view.

4. SIMULATION STUDY

We conduct simulation studies to investigate the performance of our proposed
method by estimating the conditional quantile and ES at a given high level of
pn. The results show that the proposed estimates outperform the usual quan-
tile regression estimates for high tails in terms of mean squared error (MSE).
Moreover, our proposed method is superior to that of Wang et al. (2012) in
some cases. For comparison, the data are generated from the same model as
Wang et al. (2012), which is formulated as follows:

yi:xil+xi2+(1+rxil)eia izla"'ana (422)

where x; ~ Uniform(—1,1), j=1,2, es are independent and identically dis-
tributed random variables, and r is a constant that controls the degree of
heteroscedasticity. Therefore, the tth conditional expectile of Y is

Ey(zlx;) = a(t) + X/ B(7),

where X; = (x;1, xp)", a(t) =&.(7), B(r) = (1 4 r&(7), 1)", and &.(7) is the tth
expectile of e;. We consider three sample sizes, » = 200, 500, 1000, and two r
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ESTIMATION OF HIGH CONDITIONAL TAIL RISK 13

values, » = 0 and 0.9, so that the coefficients §(t) are constant in homoscedastic
models with =0 and vary across t in heteroscedastic models with » = 0.9.

We also choose three different models for generating ey, . . ., e,. In models 1
and 2, the es are from Pareto distributions with the extreme value index param-
eters y = 0.2 and 0.45, respectively. In model 3, the es are generated from the
¢ distribution with four degrees of freedom so that the tail index parameter is
y =0.25.

For each simulated dataset, we apply the proposed method to estimate g,
and QES,, at the high levels p, = 0.999 and 0.9999, respectively. The number of
repetitions of the Monte Carlo simulation is 300 for each scenario. We compare
three estimation methods: the traditional quantile regression method (QR), the
method by Wang et al. (2012) based on quantile regression without a common
slope (NCS), and our proposed method based on expectile regression without
a common slope (ENCS). For both NCS and ENCS methods, let k =[cn'/?]
with ¢=4.5, where n is the number of observations, and let n =0.1 so that
m=n — [n*!]. Our numerical investigation suggests that the tail index becomes
stable around this choice of k and both of the NCS and ENCS methods clearly
outperform QR for ¢ € [3, 10].

Let us first take a quick look at the asymptotic variance comparison of NCS
and ENCS methods. According to asymptotic theory,

Var(NCS) y? 12y
Var(ENCS)  2y3/(1=2y) 2y

holds, and this suggests that NCS method is likely to have a larger variance
with 0 < y < 0.25, while ENCS method is likely to have a larger variance with
0.25 <y < 0.5. On the other hand, it is noticed that the asymptotic variance
comparisons are not fully informative for the estimation of high quantiles and
QES, because both bias and variance are important in areas where data are
sparse. We focus on comparisons of the mean square errors (MSE) obtained
from finite sample simulations in this /grticle. Tables 1, 2, and 3 summarize
the MSE of different estimators for &z(,,/q,, under different scenarios at
x=(0,0)" or x=(0.5,0.5)7. Tables 4, 5, and 6 summarize the MSE of differ-
ent estimators for )ﬁ;’;@”) /QES,, under different scenarios at x=(0,0)” or
x =(0.5,0.5)7. The reason we consider the MSE of their quotients is that they
represent the relative MSE, which are more convincing than the traditional
absolute MSE.

The results in Tables 1, 2, and 3 suggest that the proposed NCS and ENCS
methods provide more efficient estimations than that of QR in almost all cases.
In Table 1, with relatively light tails, both NCS and ENCS perform well in
terms of estimating high conditional quantiles, and NCS is slightly better than
our proposed ENCS method. However, both of them are much better than
QR. In Table 2, with relatively heavy-tailed distributions, NCS is superior to
ENCS. One reason for this is that according to asymptotic theory, ENCS has
a larger variance than NCS when we set y =0.45 > 0.25. Another potential
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14 J.HU, Y. CHEN AND K. TAN

TABLE 1

MEAN SQUARED ERRORS x 100 OF DIFFERENT ESTIMATORS FOR %’(,,n)/q,,n IN CASE | WITH
PARETO(0.2) ERRORS, WHERE p, =0.999 AND 0.9999.

x = (0,0)" x=(0.5,0.5)"
r Method 0.999 0.9999 0.999 0.9999
n =200
0 QR 7.85 18.41 10.07 24.09
NCS 3.5 7.52 4.58 10.03
ENCS 3.47 11.16 4.10 11.96
0.9 QR 10.69 29.98 9.68 27.05
NCS 4.76 9.09 4.78 10.73
ENCS 5.61 11.56 5.88 12.81
n=500
0 QR 5.26 15.27 4.96 17.78
NCS 2.06 4.6 2.63 6.68
ENCS 2.09 6.84 2.62 7.89
0.9 QR 575 22.48 5.35 25.78
NCS 2.52 5.51 2.67 8.87
ENCS 2.77 7.49 2.83 10.84
n=1000
0 QR 4.13 10.65 3.89 10.35
NCS 1.21 245 1.51 4.21
ENCS 1.23 2.75 1.52 4.4
0.9 QR 4.25 11.76 4.13 18.27
NCS 1.44 3.11 1.67 5.45
ENCS 1.47 4.15 1.73 6.87

Note: QR is the conventional quantile regression method, NCS is the method pro-
posed by Wang et al. (2012) assuming non-common slopes based on conditional
quantiles, and ENCS is our proposed method based on conditional expectiles.

cause is the mean value of a Pareto distribution is not equal to zero, so ENCS
is more biased than NCS based on the asymptotic theory. Moreover, a heav-
ier tail means more outliers and expectile regression is more sensitive to these
outliers than quantile regression, so it brings a larger variance. In Table 3,
with #(4) distribution of tail index y =0.25, NCS and ENCS have the same
asymptotic error, and the mean value of #(4) is zero. The results show that our
proposed ENCS is best, and suggest that our proposed method is more suitable
for financial data analysis because it is now commonly accepted that financial
asset returns are, in fact, heavy-tailed with zero mean. In general, the NCS and
ENCS methods have a larger MSE when n = 200, but the errors start to shrink
as the sample size increases.

Tables 4, 5, and 6 show the MSE of the YES';W”) /QES,, estimator by using
the NCS and ENCS methods, respectively. For comparison, we first use the
method of Wang et al. (2012) to estimate the extreme level quantile g,,, and
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TABLE 2

MEAN SQUARED ERRORS x 100 OF DIFFERENT ESTIMATORS FOR ’g}/;(,,n)/q,,n IN CASE 2 WITH
PARETO(0.45) ERRORS, WHERE p,, = 0.999 AND 0.9999.

x=(0,0)" x =(0.5,0.5)"

r Method 0.999 0.9999 0.999 0.9999
n=200

0 QR 19.29 22.27 20.96 37.58

NCS 10.74 12.60 11.63 13.68

ENCS 15.58 17.54 19.62 23.89

0.9 QR 21.11 32.75 25.35 43,78

NCS 11.54 15.51 16.61 18.77

ENCS 15.39 19.49 19.15 22.65
n=>500

0 QR 12.13 15.27 14.12 19.69

NCS 5.16 8.63 6.54 7.66

ENCS 8.07 9.88 7.61 10.59

0.9 QR 15.87 24.38 20.15 26.79

NCS 5.47 9.11 8.14 8.94

ENCS 7.91 11.58 10.59 12.82
n=1000

0 QR 6.42 13.25 8.13 13.27

NCS 2.20 2.79 2.60 5.23

ENCS 341 3.88 3.76 7.32

0.9 QR 10.2 14.83 12.52 20.12

NCS 3.47 3.68 4.03 6.16

ENCS 4.79 5.75 6.41 8.77

Note: QR is the conventional quantile regression method, NCS is the method pro-
posed by Wang et al. (2012) assuming non-common slopes based on conditional
quantiles, and ENCS is our proposed method based on conditional expectiles.

thenuseq,, /(1 — ¥) to estimate @pn, where ¥ is the tail index estimated based
on conditional quantiles. Not surprisingly, the MSE results in Tables 4, 5, and
6 have the same properties as those in Tables 1, 2, and 3. In Tables 4 and 5, for
Pareto distributions of light- or high- tailed indices, NCS is better than ENCS.
However, in Table 6, with the ¢ distribution, ENCS performs better.

Our empirical studies suggest that the proposed method is not worse than
that of Wang et al. (2012) for estimating quantiles and QES at extreme lev-
els where the tail index is small, but it performs better than NCS when the
t distribution is used. Inspired by this advantage, it is suitable for us to apply
the proposed approach to financial data analysis, and this is in accordance with
our initial goal. The method in this paper should be used in larger sample prob-
lems, especially when the data exhibit clear heteroscedasticity in the tail. Our
estimates are better than those of QR in general, and it is consistent with what
we imagine at an extremely high level.
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16 J.HU, Y. CHEN AND K. TAN

TABLE 3

MEAN SQUARED ERRORS x 100 OF DIFFERENT ESTIMATORS FOR Eﬁ(,,“)/q,,“ IN CASE 3 WITH #(4)
ERRORS, WHERE p, =0.999 AND 0.9999.

x=(0,0)" x =(0.5,0.5)"

r Method 0.999 0.9999 0.999 0.9999
n=200

0 QR 16.91 34.02 17.52 41.13

NCS 8.12 20.78 8.87 22.82

ENCS 5.18 11.86 5.99 12.19

0.9 QR 17.34 44.73 19.69 44.93

NCS 12.88 19.71 14.76 20.03

ENCS 8.42 10.54 8.89 10.19
n=>500

0 QR 10.35 15.09 12.74 21.57

NCS 4.76 11.48 5.02 12.43

ENCS 2.69 5.98 3.04 6.77

0.9 QR 11.64 16.85 13.32 24 .97

NCS 4.25 9.96 4.97 11.15

ENCS 2.38 5.72 2.96 5.49
n=1000

0 QR 5.01 6.83 5.77 8.37

NCS 2.34 5.72 2.41 6.19

ENCS 1.28 2.47 1.48 3.09

0.9 QR 6.32 7.89 6.95 11.26

NCS 2.21 5.58 2.39 6.08

ENCS 1.14 2.33 1.18 2.76

Note: QR is the conventional quantile regression method, NCS is the method
proposed by Wang et al. (2012) with non-common slopes based on conditional
quantiles, and ENCS is our proposed method based on conditional expectiles.

5. REAL DATA ANALYSIS

To illustrate the practical usefulness of our proposed extrapolation method, we
consider the daily data of two publicly traded Chinese firms China Life (CL)
and the Bank of China (BOC), respectively. CL is one of the biggest and most
well-known insurance corporations in China, and BOC is one of the biggest
banks in China. Both of them belong to the Shanghai Stock Exchange. The
data are downloaded through R package quantmod from Yahoo Finance and
cover the period from January 13, 2012 to January 5, 2018, which contains
the turbulence in Chinese stock market from June 2015 to February 2016. The
sample has 1453 observations which are calculated as the difference of the log
transformation of the price, that is, y, =log(P;/P,_1), where P, is the daily
price. Our computations focus on —y, so that extremely high levels of VaR
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TABLE 4

MEAN SQUARED ERRORS x 100 OF DIFFERENT ESTIMATORS FOR @W”)/QES,,“ IN CASE 1 WITH
PARETO(0.2) ERRORS, WHERE p, =0.999 AND 0.9999.

x=(0,0)" x =(0.5,0.5)"
r Method 0.999 0.9999 0.999 0.9999
n=200
0 NCS 5.10 9.82 7.29 13.62
ENCS 6.27 15.41 7.71 16.96
0.9 NCS 7.12 11.87 7.40 14.35
ENCS 8.86 15.56 9.47 17.98
n=>500
0 NCS 3.26 6.24 4.44 9.5
ENCS 4.12 10.2 4.66 12.16
0.9 NCS 3.99 7.51 4.55 10.81
ENCS 4.85 10.88 5.27 12.86
n=1000
0 NCS 2.89 3.57 3.05 4.79
ENCS 3.75 4.61 3.81 5.18
0.9 NCS 2.85 3.26 3.14 4.86
ENCS 3.24 4.12 3.86 5.24

Note: NCS is the method proposed by Wang et al. (2012) with non-common
slopes based on conditional quantiles and ENCS is our proposed method based
on conditional expectiles.

and QES can be used to measure extremely high levels of loss. We start the
analysis with the following model:

vi=a(t)+M,_ (1) + €,

where M,_; is a lagged macroeconomic state vector, similar to those suggested
by Fang et al. (2018): (i) the volatility index, VIX, which is defined as the aver-
age of the squared daily return of the SSE (Shanghai Stock Exchange) 50 index
with a weekly frequency; (ii) the liquidity spread, LS, which is defined as the
difference between the 3-month collateral repo rate and the 3-month treasury
bill rate; (iii) the spread term, ST, which is defined as the difference between the
10-year treasury bill rate and the 3-month treasury bill rate; (iv) credit spread,
CS, which is defined as the difference between the 10-year BAA rated bond and
the treasury bill rate. .

In practice, the first objective is to test whether the slope estimates 8(t) vary
across t at high levels. Therefore, we apply the analysis of variance (ANOVA)
test developed by Newey and Powell (1987) and consider the special case of
common slopes (the null hypothesis) at 7;,j=1,...,10, where 7, ..., 1) are
equally spaced between 0.95 and 0.99. The p-value of the ANOVA test are
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TABLE 5

MEAN SQUARED ERRORS x 100 OF DIFFERENT ESTIMATORS FOR Yﬁﬂw/QES,,ﬂ IN CASE 2 WITH
PARETO(0.45) ERRORS, WHERE p,, = 0.999 AND 0.9999.

x = (0, 0)" x =(0.5,0.5)"
r Method 0.999 0.9999 0.999 0.9999
n=200
0 NCS 25.03 29.11 35.80 41.21
ENCS 28.85 34.89 43.92 48.25
0.9 NCS 28.15 32.49 46.41 48.12
ENCS 37.84 44.59 55.43 57.64
n=>500
0 NCS 13.56 16.43 14.48 19.50
ENCS 17.72 19.12 18.96 21.43
0.9 NCS 13.89 17.48 16.99 20.87
ENCS 14.85 20.59 19.67 24.93
n=1000
0 NCS 4.88 5.61 5.07 7.11
ENCS 6.79 8.63 7.84 10.17
0.9 NCS 5.87 7.02 7.21 8.87
ENCS 8.25 10.92 9.74 12.59

Note: NCS is the method proposed by Wang et al. (2012) with non-common
slopes based on conditional quantiles and ENCS is our proposed method based
on conditional expectiles.

6.5 x 107" for CL and 4.3 x 1077 for BOC, suggesting that the slope coef-
ficients B(7) of both the CL and BOC datasets are significantly different at
upper levels T € [0.95, 0.99]. Another issue is to select a reasonable value of k.

A commonly used heuristic approach for choosing & in the EVT literature
is to plot the estimates of y versus k and then choose a suitable k correspond-
ing to the first stable component of the plot. However, there are few literature
that discuss that how to choose a suitable k for the proposed method based
on conditional expectiles. Following previous opinions, we also plot the esti-
mates of y as a function of £ and the results are presented in Figure 1. For
illustration, in Figure 1, when the macroeconomic state variable is given at
M= ﬁ ,T:_ll M, the NCS estimates of ¥ for CL (left) are relatively stable
when k 1s between 95 and 100 and the 7 estimated by the ENCS method also
become relatively stable in this interval and are close to y. Thus, we choose
k =98 for the CL data. Similarly, as we can see in the right plot of the BOC
data in Figure 1, the first stable interval is [65, 75] where the ENCS estimates
of y are very close to the NCS estimates. Thus, the chosen k = 70 is reasonable
for the BOC data.

As the mainstream approaches for measuring the risks of financial firms,
VaR and ES are widely used and well explained in numerous applications. In
this article, we aim to estimate VaR and ES at an extremely high level. After
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TABLE 6

MEAN SQUARED ERRORS x 100 OF DIFFERENT ESTIMATORS FOR mw,,]/QESp” IN CASE 3 WITH #(4)
ERRORS, WHERE p, =0.999 AND 0.9999.

x=(0,0)" x =(0.5,0.5)"
r Method 0.999 0.9999 0.999 0.9999
n=200
0 NCS 15.43 40.01 18.54 4543
ENCS 8.03 14.88 9.36 17.82
0.9 NCS 19.5 35.87 25.63 36.04
ENCS 14.61 15.31 17.67 15.57
n=>500
0 NCS 8.67 19.28 9.64 25.76
ENCS 4.96 9.93 4.77 10.83
0.9 NCS 8.56 18.92 11.78 21.09
ENCS 4.67 9.39 4.24 9.79
n=1000
0 NCS 4.48 10.13 5.42 12.73
ENCS 2.77 4.96 2.85 5.12
0.9 NCS 4.51 9.18 5.09 11.74
ENCS 2.32 4.57 2.48 4.68

Note: NCS is the method proposed by Wang et al. (2012) with non-common
slopes based on conditional quantiles and ENCS is our proposed method based
on conditional expectiles.

CL BOC

o
I : :
o NCS ; NCS ;
' n R '
_ - ENCS :
o < '
o — '
3 ° ‘
n o | :
<> <= o h
Q :
S o :
o o '
] 5 - s
o '
S o | :

o
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
k k

FIGURE 1: The plot of the estimates of 7 as a function of k, for CL (left) and BOC (right) with both the
NCS (green) and ENCS (red) methods. Note: The macroeconomic state variables of the two plots are set as
ZT ' M,. Throughout the two figures, NCS estimated ¥ for CL are first stable when k is between
95 and 100 whlle those for BOC are first stable when k is between 65 and 75. In addition, ENCS estimated 7
of CL and BOC are relatively close to that NCS estimates. Thus, we choose £ = 98 and k =70 for CL and
BOC, respectively.
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FIGURE 2: The estimated VaR of CL (left) and BOC (right) at the extremely high level p, = 0.999. Note: The
black line represents the original data,the blue, green, red, and orange lines represent the extremely high-level
VaR estimates obtained by traditional quantile regression (QR), NCS, ENCS, and HGARCH, respectively.

determining the value of k, we can use the estimated tail index ¥ to extrapolate
our results to extremely high level based on (3.10), (3.13), and (3.14). In
this analysis, we focus on the extreme level p, =0.999. Figure 2 presents the
estimated results of VaR or equally the Er/(p”) of CL (left) and BOC (right).
For comparison purposes 'we consider three different methods QR (blue line),
NCS (green line), and ENCS (red line). We also consider GARCH models
with heavy-tailed innovations (see Chan et al., 2007). To distinguish it from
the general GARCH model we denoted it by HGARCH (orange line). For
simplicity, we consider the following HGARCH(1,1) model:

yi =06, of=c+by  +ao],, (5.23)

where ¢, follows a Pareto-type distribution, and ¢>0,6>0,a>0,b+a < 1.
Once 7, have been estimated by model (5.23), then €, can be estimated by €; =
v:/0:. By the assumption that ¢, in (5.23) have heavy tails, the relative tail index
is estimated by the Hill estimator

where €, | <--- <§,, denote the order statistics of €,, and k is similarly selected
based on the Hill plot. Given an extreme level p,, the p,-quantile of ¢, can be
estimated by

_ k 7
VaR.,, =\ ———= /\nnf .
e <n<1—p,,)> Crnk

Then, the p,-quantile of y, can be estimated by
VaR,,, =6,VaR.,,.
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The black line represents the original data, and it shows that extreme values
mainly occur during 2015-2016, the period of Chinese stock market turbu-
lence. When we focus on the left plot for the CL data in Figure 2, the VaR
estimated at an extremely high level of CL by QR is usually underestimated
during the whole period, and this will cause the company to have inadequate
risk resistance. However, NCS method (green line) is usually above the QR
method (blue line), especially during crisis period, so NCS may be rejected by
investors because it is too conservative and reduces revenue too much margin
is set to withstand risks. The result of our proposed ENCS (red line) method
is between the lines of QR and NCS for most of the period and can provide
guidance for risk management and investors. The estimated values obtained
by the HGARCH method are relatively small during the steady economic
period, but extremely large during the crisis period. Similarly, we can estimate
the extremely high VaR of the BOC by the same way as that of CL, and the
results are shown in the right plot of Figure 2. It can be seen that NCS and
ENCS deliver similar pattern as VaR estimates, but both methods estimate
higher risks than those of QR in most cases. However, the NCS and HGARCH
methods sometimes estimate more extreme values of VaR than those of ENCS
method during the crisis period. To quantify the conservatism of each method,
for each method we also report the realized number of violations (NV)

n

NV =>"1(y, > VaR,,),

t=1

where VaR., is the quantile estimator and the corresponding asymmetric
piecewise linear score computed by averaging

1 n
S(VaR:, ¥)=- > S(VaR.,, ).

=1
where

(1 —-1)(VaR.,—y,), if y, <VaR,,,

SVaRe V=0 o~ var,),  if VaRe, <.

The results are presented in Table 7. Since the sample size is 1453 and the
extreme level of p,=0.999, ENCS is the most accurate method in which
model the number of violations is just between 1 and 2. From the averag-
ing asymmetric piecewise linear score method, the QR method is usually the
least conservative, which could underestimate the potential risk. On the con-
trary, the NCS method is usually the most conservative that not accepted by
investors. While the ENCS method steers a middle case between QR and NCS
method, which could be more attractive in practice.

With regard to estimating ES at an extremely high level, there is no straight-
forward regression method for achieving this goal. Thus, we only take NCS
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TABLE 7

THE NUMBER OF VIOLATIONS (NV) AND THE AVERAGING ASYMMETRIC PIECEWISE LINEAR SCORE
S(VaR,,Y) x 1000 FOR EACH METHODS OF CL AND BOC, RESPECTIVELY.

CL BOC
Method NV  S(VaR,,Y) NV  S(VaR,,Y)
QR 4 0.097 0 0.081
NCS 0 0.139 0 0.132
ENCS 1 0.118 2 0.107
HGARCH 0 0.101 1 0.116
CL BOC
0]
NCS S ] NCS
@ — ENCS — ENCS
© |
o
< |
s © s <
) [4)) o
w w
S o ]
S 8
ch WVWWMW g
o S
T T T T T T I T T T T T T T
2012 2013 2014 2015 2016 2017 2018 2012 2013 2014 2015 2016 2017 2018

FIGURE 3: The Expected Shortfalls (QES) of CL (left) and BOC (right) are at the extremely high level
P»=0.999. Note: The black line represents the original data, the green and red lines represent the extremely
high-level QES estimated by NCS and ENCS methods, respectively.

and ENCS for our comparison. Figure 3 presents the estimations of gE\SM or

equally A/’ES‘%;(,,M) at p, =0.999 for CL (left) and BOC (right). The left plot in
Figure 3 shows that the NCS method estimates a larger QES for CL than the
ENCS method does during most of the sample period. When we examine the
right plot in Figure 3, similar as that of CL estimates, the green line is usually
above the red line, which means that the NCS method estimates a larger QES
for BOC than the ENCS method does during most of the sample period.

Overall, our proposed ENCS method is not worse than the NCS method
proposed by Wang et al. (2012) for estimating extremely high conditional VaR
and ES. Of course, both NCS and ENCS methods perform better than QR in
the high-tailed risk analysis.

6. DISCUSSION

Estimating extreme tails is difficult, if not infeasible, without any distributional
assumptions on the tails. In this article, we develop a new method for high
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conditional expectile estimation by assuming that the error distribution is in the
maximum domain of attraction of a Pareto-type distribution. This assumption
simplifies the complex conditions required for the proof of asymptotic theory
and makes it possible to extrapolate expectile estimates from intermediate lev-
els of the data range to the high end. We rigorously establish the consistency
and asymptotic normality of the proposed extreme value index estimators and
the extrapolated high conditional expectile estimators. Numerical studies show
that extrapolation leads to more accurate conditional quantile and ES at high
tails than those obtained by conventional quantile regression for heavy-tailed
distributions. Moreover, our proposed ENCS method performs better than
the NCS method in zero-mean, heavy-tailed error distributions, such as the
t distribution.

For the financial analysis conducted in Section 5, the challenging work is
to select a suitable value of k. Like many other extreme value studies suggest,
we plot the estimates of y as a function of k and choose the first relatively sta-
ble component of the plot. Through a comparison of the results of the two
stock datasets, we suggest an alternative method for selecting %, that is, to
select the intersection of the conventional Hill plot and the expectile-based
Hill plot. In most cases, the estimated value is close to those obtained by
quantile-based estimators over the first stable interval. In our analysis, the
ENCS method is no worse than NCS method proposed by Wang et al. (2012)
for estimating extremely high conditional VaR and ES values. However, some-
times our method provides more eclectic opinions than those of NCS for both
risk managers and investors.

The estimation of the standard error of any high quantile or expectile esti-
mates can be challenging. Although the asymptotic variance can be calculated
by Theorem 3.2, the asymptotic variance of the proposed ENCS method is dif-
ficult to estimate due to its complicated structure. Whether other methods such
as the bootstrap can provide decent approximations needs further investiga-
tion. Another inadequacy of the proposed method is that there is additional
bias induced when the conditional mean is not zero. There is also a trade-off
between bias and variance with regard to the complexity of the tail index as a
function of x. Due to the data sparsity in the tails of a distribution, a constant
tail index is often realistic and helpful in many situations. Additional research is
needed to evaluate how to strike a better balance between the bias and variance
when there is clear evidence against the common index assumption.
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APPENDIX A. PROOFS OF THEOREMS

Lemma 1. Condition A3 and Equation(3.17) imply that Uyx(t|z) = F;,Z(l — 1/t|z) satisfies
the second-order condition (2.5) with index (y, p, A*), where 0 <y <1/2, and A*(t) = yd*1°,
d* ={K(2)}’{d + pK(z)}. Then, Uy(i|z)= F;,l(l — 1/t|z) satisfies the second-order condition
(2.5) with index (y, p,A), where

A =yd,  p=max(—vy,p), (A.D)

d= d*I(p > —y) — 1270 1(p < —y), ¢* = c{K(z)}¥ and ¢ > 0 is a constant.
Proof of Lemma 1. This lemma has been proved in Wang et al. (2012). O

Lemma 2. Suppose Model (3.6) and Conditions A1-A4 hold. Define T ={t,_; <--- < T}
withm=n—[n"]forO<n<1,t5=j/(n+1)forj=n—k,...,m andk > [n"], k/n— 0. then

we have

— 3

yaiTo "él D (6(c)— b)) % N (0, 12’”2]/ H_IEH_1> ,
0,7

uniformly for v € T, where &y ; is the tth expectile of Fy, H=E [{K(Z)}_VZZT] and X =
E(ZZT) are positive definite matrices.

Proof of lemma 2. Define

n

My, 1) =) " or(vi — 2] 0(2) — 2 u//n) — 02 (vi — 2] 0(2)].

i=1
Then, denote the first and second derivatives by o (y; — ziT 0(t) — t) at t =0 as follows:

g 07 =0, (vf = Dli=0 = =2[xy{I(y} = 0) + (1 — D)y I(; <0)],
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and

he (7)) = 07 (V] — D=0 = 2[71(y} = 0) + (1 = DI} < O)].

Therefore, we can decompose M, (u, ) by Taylor expansion,

" Ty by y\’ 1
M 0= | 0D + ?(-%‘) —l—o(;) ,

i=1

where y7 = y; — ziTO(r). Denote Wy(t)=Y 1, gf(yj‘)%, th, = E(h:(y7)). Then we calcu-
late Var(W,(t)) and u;,, based on heavy-tail distribution assumption.

By Condition A4, Fj satisfies the second-order condition Ca(y, p, A), and let Fy be the
survival function. Then we have

1 F oy 1
Vx>0, i { o) xl/y} N e iy (A.2)

m — —
=00 A(1/Fo(0) | Fo(D) 174
Furthermore, by Bellini ez al. (2014), we have

Fo(éox)
1—1

> '=1) as o1 (A.3)

Since 11, 1 — 7 | 0, & — o0, the main source term of variance Var(W,(t)) comes from
tyfl(y; = 0). Assume that ¢,i=1,...,n are iid from Fy, by Condition A2, yf=y; —
2/ 0(t) = {K(z)}" (¢; — £0.7), thus

n N2V o, T
Va0 o) =4 EELEEI e e 6,0
n N2 ., T
+0 ((1 - f)zizl{K(:)} Y ziz] )
— 42 E[{K(Z2)Y ZZ" |0} (A.4)

where U}i =E[(e — 50,,)2]1(6 > & ¢)], and we can calculate 0";?, as follows:

2
ngr ZS&TEI: (S;ir - 1) H(G/EO,T > 1)]

:53,: /1 2(x — 1)Fo (&7 x) dx

. 2 2 o f (SO 'L'x) -
= &2 Foldoo) [ —t—— 2x— 1) | =t W Ly ) (A
&y Fo6o.r) ((1 20— y) +/1 (x—=1) |: Fo(¢o.r) X } X (A.5)

Plugging (A.2) and (A.3) into this equality, we thus get
a;r = S&T(l —1)

2y 1 [ 1—y+o(l) 1+ o(1) ]
24 = - D).
X<1—2y+ <Fo(§o,r)) y(I=2y)0 =2y —p) y(—y—p) ol )>

(A.6)
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Next we calculate p,, directly:

tin, =2[TE(I(€ > &) + (1 = D) E(I(€ < &0,))] = 2[tFo(§0.0) + (1 — ©)Fo(0.0)];
substituting (A.3) into this equality, we have

1

he =261 =)y~ = (1= =] =261 = o)y o) (A7)
Recall that
N o he) (2l ? 1
M= 0| 0D G (_ﬁ> +o(3)]
and

2 n
he(y¥) —
) = M(z?u)zeo as n— oo,
n
—

I

i hr(y?) — M, _z,'TJ
o 2 v

thus,

" eon) [ Tu\T g, (a0 -, [ 2Tu)
210 () -n e () e (5

P

w'Su as n— oo.

Then, we have:

Hhe

My, v)— —u® Wy(t)+ 7 u'Su as n— .

In addition, E(W,(t)) =0, it can be readily obtain from Lindeberg—Feller CLT that
Wo(z) % N(o, 4t%0 2 E[(K(Z))Y ZZT]),

then, it follows that

~ 412072
V() = 00} = (s, B W)+ 0p(D) 5 NO, B EHTY,  (AS)
Mo,

uniformly fort € T.
By plugging in (A.6) and (A.7), we have

a- 7)472%2,
sg»f'u%r
2£2 2 2 1 1—y+o(1) __1+o(l)
4765 (1=7) (1—2y +24 (F(,(a),r)) B y(l—y—p>]+"(1))

4265 (1—P2[y = +o()P
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2y3 5 1 [ 1—y+o(1) 14 o0(1) ]
= 2y°A | = -
-2y 7 (Fo(éo,r)) Y2012y —p) y(0—y—-p)

Therefore,

3
V"(1_T){ﬁ(r)—ev(r)}_fﬁ]v(o, 2y H1>:H1),

SO,‘[ -2y

uniformly for t € T, hence we complete the proof. O

Proof of Theorem 3.1. We first denote that & =z 6(z;) for j=n —k, ..., m. Note that

. En—j—bn—j
1 Xk:l $"7J<l+ EEN )

A g (14 g k)

k o~

k .
= § X tor 4 2 o)
n— i n=j

J=lm J=lnm

o~

R et
_ng,] T{l +0p(1)}

=1 (E1n + Ezy — E3p){k/(k — [n"])}.

k=]

By Lemma 1, Uy(¢) satisfies the second-order condition (2.5) indexed by (y, 0, A)
where 0 <y <1/2, A(t)_ ydtp o= max( y, p), and d= d*I(p > —y) — 1270 (p <
—y), with corresponding constant ¢*. Then we consider the three subitems Ej,,i=1,2, 3,
separately.

Note that

§ 4 Uyln+1D/G+0)
En—ik dn—k Uy{(n+1)/(k+ )} ’

where g; is the 7;th quantile for j=n —k, ..., m. Thus, we can write £y, as

k [n"—1] L.
I ey 1 Url(n+ D/G + )
P L8 Tk O G ko)

k E4i n Uy (M-(k-l-l))
; én_i +0(1)%10g zf:l(nﬂ) .

k+1

k‘ \
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Then, by Proposition 1 in Daouia et al. (2020a) and Riemann integral approximation, it
follows that

1
Eln=—V/0 log sds + o1 /) + L l)yEmZ)f (s — )ds+o (E(W))

qn
-1 _ _~
Gt 2V x A(n /k)/ L s + o(n/k)) + o)™ l°gk
l—yp
1-—y)y =17~ E(Y[z) y2(y ' =1y
= ) —
R Ty M A R
+ Ok~ 'n" log k) + o(A(n/k)). (A.9)

We now consider E»,. By Lemma 2, we have

1-— ~
@wﬁ%o(ﬂh\/WH*‘W:@){H%U)}, (A10)

uniformly for v € 7, where W, (v) = (2ragr)*1E{K(Z)}*V W,(t) converges to a mean zero
and covariance matrix ¥ Gaussian process on 7.

Then
k 3 Ty -1 * .
1 0,0,V 2y /(1 = 2y)z 7 Wi (Tn—))
Ey=7 ) — L+ op(D),
S Ery /1T = Tuy)
it follows that
- i+ 1\ (K@)
5051 =<J+ ) K L)
érn_j n(l — 7 ]) k+1 vk
1
:{K(z)}_Vk_l/Z/ w72 du(1 + o(1))
0
=2k V2{K(2)}77 (1 + o(1)).
Thus,
Ey =2k 23 /(1 = 2)e" H' Wi (DK (2)) 77 {1 + 0p(1)), (A.11)
where W;i(1) = lim;_,1 W (t). Similar to the approximation of Ej,, it is easy to see that
E3, =k™'22y3 /(1 = 2y)s" H Wi (DK @)} 7 {1+ 0p(1)). (A.12)

By (A.9), (A.11), and (A.12), and the assumption ~/k4(n/k) — A1 € R, k] gy, _;— r €
R,and k= 1/2pn log k — 0, we obtain that

- =pt-n7F iy~ =1y
\/E(V —-y)= (1 — [)')(1 = ,(7) Al _E(Y|Z)ﬁ)»2

+/273 /(1 = 2y)z" H Wi (DK (@)} 7 {1+ 0p(1)).
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Thus,
~ d
VK@ = )5 Nb.vy).

and we complete the proof. O

Proof of Theorem 3.2. Note that

AN k B n(1— )7 &
“’g(s,)‘(y_”log(n(l—r,;)“"g(sn>_l°g([ k)

The convergence log [k/(n(1 — t,,))] — oo yields

“/]; log (gnk
log[k/(n(1 — 7)) En—ic

) = Op(1/log [k/(n(1 — 1)) = 0p(1), (A.13)

and

(SN ([L—Té)]yﬁ>
logk/(1— )] \L™ k| &
_ vk log & “log <@>+1og ([n(l—t,;)]y L)
log lk/(n(T— o] \ %\ 4y ik I
vk 1 ~ 1
=0 k —
(log /1 — )] [an AR D

vk 1 .
= k
¢ (log /(T — )] [qn,k e )'D

=o(l). (A.14)

Here, convergence (A.13) is a consequence of Lemma 2. Convergence (A.14) follows from
a combination of Proposition 1 in Daouia et al. (2020a), Theorem 2.3.9 in de Haan and
Ferreira (2006), and the regular variation of |4|. Combining these convergences and using
the delta method leads to the first desired result.

The key idea to prove the second problem is to write

> 1=\ " = =%\ 7 1=\ 7 ~
foo= (o) B () X{(l-w) 5} A1

Moreover, as shown in the part of the proof of Theorem 6 in Daouia et al. (2018),

=500, , 1
—aen P\ G an)
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Therefore, we have
1-7 (pi’l) _ ~ 1 - Tn(pﬂ)
< n(Pﬂ)) P < vlog [1 - Tn(pn)]>
1 1
o (‘ [V o (Ml = w)ﬂ o (Ml = w)))
1
=140, <m) , (A.16)

by a Taylor expansion. Furthermore

- 1=\ 7 ~
g’:ff\rlz(Pn) = < 1— :nfk E":nfk’

by definition of the class of estimators E?;,@n). From Theorem 3.2, we conclude that the
conditions of Theorem 3.2 are satisfied if the parameter 7, is replaced by t;,(p,). Then

J]; STn(Pn) _1
og [k/(n(1 — %)} \ &2/

) g N(bzs Vz)

Finally

log[ik ]—log[il_%*k]—log[il_r ]+log[ L= ]

n(l — 7;(pn)) 1 —7(pn) 1- 1 —7(pn)

and the first term above tends to infinity, while the second term converges to a finite
constant. Consequently

k 1 n—k k
log [m} log [ﬁ] (1+o(1))=log |:I’l(l —pn)] (1+o(1)).

Together with the equality &,/ ! om) = Dpn which is true by definition of ,(p,), this entails

vk )
log [k/(n(1 — pu))]

- 1) 2 N(by, vy), (A.17)
q[’n

Combining (A.15), (A.16), and (A.17), we complete the proof.
For the third part of the proof, we define the simple version T, =T}, (p»),7,, = 7;,(px), then

—_—
we examining the convergence of XES?;I. Write

XESz\ (& (1-9) XES,,
1°g<XESf,;> m(%)“(u >1) loe (a—ws)

By Theorem 3 and the delta method,

k(5
log [k/(n(1—gp)] =\ &1

) — N(bg, vy). (A.18)
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Using Theorem 3.1, the delta method and the convergence log [k/(n(1 — 7,,))] — oo, we get

vk ="\ r
1 — 0. A.19
log (k/tn(1 — o] ((1 e (A1)

Using finally a combination of Propositions 1(i) and 4 in Daouia et al. (2020a) and the
regular variation of 4|, we obtain

vk <(1 XESy, ) 0. (A.20)

lo
log[k/(n(1— )] S\ (=) &,
Combining convergences (A.17), (A.18), and (A.20), we obtain
vk XESg\ 4
1 Z . A21
log [k/(n(1 — ;)] S\ XES, |~ Nibz. v2) (A21)

By definition of 7, (pn), XES /) = QES),, combining convergences (A.21), we have

\/l; fETS?;;(Pn) d
log[k/{nﬂ—r,;(pn»}]( 0gs,, )7 N (A22)

Recalling that log [k/{n(1 — 7, (p,)}] = log [k/(n(1 — pn)))(1 + o(1)), we have completed the
proof. O
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